CONFUSETAINT: Exploiting Vulnerabilities to
Bypass Dynamic Taint Analysis

Yufei Wu
Umead University
yufeiwu@cs.umu.se

Abstract—Dynamic taint analysis (DTA) tracks how sensitive
data flows through a program at runtime, enabling the detection
of security violations such as information leaks and injection
attacks. However, most DTA systems assume that memory layouts
are type-safe and structurally consistent—an assumption that
can be violated by vulnerabilities such as type confusion. While
type confusion has been studied in the context of sandbox
escape, its ability to silently bypass taint tracking without
altering program behavior remains unexplored. In this paper, we
present CONFUSETAINT, a technique that leverages type confu-
sion vulnerabilities to corrupt taint metadata without modifying
program semantics or the analysis tool. CONFUSETAINT uses
wide memory overwrites enabled by type confusion to corrupt
taint tags, breaking the assumptions of taint tracking mechanisms
that rely on shadow memory.

We evaluate CONFUSETAINT on two widely used taint track-
ing frameworks: Phosphor for the JVM and TaintDroid for
Android. In both cases, CONFUSETAINT successfully bypasses
taint tracking, allowing sensitive data to reach designated sinks
without detection. These results reveal a structural weakness in
current DTA designs: their reliance on type-safe memory layouts
leaves them vulnerable to low-level reinterpretation. Overall, our
work reveals that runtime-level memory reinterpretation is an
overlooked threat, calling for taint tracking architectures that do
not rely on fragile assumptions about type and memory layout.

Index Terms—Program Analysis, Dynamic analysis, Taint anal-
ysis, Type confusion, Vulnerability

I. INTRODUCTION

Modern software systems are increasingly complex due to
features such as reflection, runtime code generation, and un-
trusted third-party dependencies. These factors obscure control
and data flows, making it difficult to enforce security policies
and increasing the risk of logic flaws like insecure deseri-
alization [1]. Dynamic taint analysis (DTA) addresses this
challenge by tracking how sensitive data propagates during ex-
ecution [2]-[4], enabling detection of data leaks and injection-
style attacks with fewer false positives than static analysis [4].
Early DTA systems [5], [6] used binary instrumentation,
incurring high overhead and limited portability. Later designs
introduced shadow memory, which stores metadata alongside
program data and was adapted to managed runtimes. For
example, Phosphor [2] instruments Java bytecode to perform
fine-grained taint tracking without modifying the virtual ma-
chine. TaintDroid [3] applies similar techniques to Android.
DTA has since been used for debugging [2], verifying program
behavior [7], and capturing runtime-dependent data flows that
static analysis may miss.

Alexandre Bartel
Umed University
alexandre.bartel @cs.umu.se

However, dynamic taint analysis relies on fragile memory
assumptions—most notably, that object layouts remain reliable
and variables are accessed through consistent types. Tech-
niques like shadow memory [8] and label mappings [9] hinge
on this structural stability to correctly track data propagation.
When these assumptions are violated, such as through type
confusion, taint tags may be misapplied, corrupted, or silently
discarded. This leads to undetected data flows, even when the
control flow remains intact and the program logic appears
correct. Such attacks are harder to detect, persist longer in
production, and avoid triggering standard defenses, making
them especially effective in gatekeeper scenarios like app store
vetting [10] or enterprise code review [11].

Despite its potential impact, the use of type confusion as a
method to evade dynamic taint analysis has not been system-
atically explored. In this paper, we present CONFUSETAINT, a
technique that exploits type confusion to bypass taint tracking
without altering control flow or causing observable runtime
errors. Our key insight is that operations such as a wide-
field write (e.g., to a long) can overwrite both a program
variable and its adjacent taint tag in one operation, bypassing
layout-based tracking mechanisms such as shadow memory.
To achieve this, we coerce the runtime to reinterpret the type
of an object—e.g., treating a variable of type A as B—and
issue writes through the forged layout. This enables attackers
to remove taint tags without triggering alarms, breaking the
assumptions of many DTA systems.

To evaluate the effectiveness of CONFUSETAINT, we ap-
plied it to two representative taint tracking systems — Phos-
phor [2] and TaintDroid [3] — covering both Java and Android
runtimes. We first confirmed each tool’s baseline ability to
track data flows, then introduced type confusion vulnerabilities
via custom test cases. These were used to assess whether
taint propagation still holds under layout reinterpretation. Our
results show that all evaluated tools failed to detect leaks once
type confusion was introduced. In each case, sensitive data
reached sinks without triggering taint alarms. This highlights a
structural weakness in current taint systems: their dependence
on type-safe memory layouts can be reliably subverted via
runtime reinterpretation.

Our findings expose a structural weakness in current taint
tracking mechanisms, where type confusion can be exploited
to corrupt taint metadata without detection. This suggests that
widely adopted assumptions—such as type safety and layout
consistency—may no longer be reliable foundations for secure

dynamic analysis. To address this risk, future systems must
rethink how taint metadata is stored and safeguarded. Potential
directions include separating metadata from program memory,
leveraging hardware-based protection, enforcing runtime type
integrity, and mitigating low-level vulnerabilities through plat-
form hardening. To facilitate further research, we release our
tool and test cases at https://github.com/software-engineering
-and-security/ConfuseTaint.

II. THREAT MODEL AND BACKGROUND

A. Threat Model

In our threat model, the target application runs in a man-
aged runtime (e.g., JVM or Android Runtime) with memory
and type safety guarantees such as bytecode verification and
runtime type checks. However, field accesses are compiled to
static offsets and are not type-checked at runtime.

We assume that the underlying operating system protections
(e.g., Address Space Layout Randomization, ASLR [12]) and
the DTA tool function correctly under normal conditions:
taint flows from sources to sinks are tracked as intended.
However, we do not assume that the application or runtime
strictly adheres to the assumptions made by taint analysis
tools—particularly type consistency and layout stability, which
are often not enforced due to performance concerns.

The attacker cannot alter the runtime or the DTA tool,
but can modify application-level code. This reflects real-
world settings where dynamic analysis is used as a security
gatekeeper—for example, Google Play Store employs dynamic
analysis [10] to detect privacy leaks in mobile apps. In such
contexts, attackers are limited to crafting seemingly benign
code that evades detection. Instead of using low-level vul-
nerabilities to compromise the system or escalate privileges,
our attack leverages them to stealthily bypass taint tracking,
achieving longer persistence and reduced detection risk.

B. Dynamic Taint Analysis

Dynamic taint analysis (DTA) tracks how sensitive data
propagates through a program at runtime. Data from desig-
nated sources (e.g., user input, location) is marked as tainted
and propagated alongside execution. When data reaches a sink
(e.g., file /0, network), the tool checks whether it remains
tainted to detect unauthorized flows. DTA has been applied in
Java [2], Android [3], and JavaScript runtimes [13] for security
enforcement.

To track taint, tools attach metadata using either shadow
memory or tag maps. Shadow memory stores tags near
data for low-latency access, while tag maps use separate
structures (e.g., hash tables) for more flexible but slower
tracking. Fig. 1(a) shows a piece of source code with a
data flow leak, where the variable a . p receives tainted input
from getUserData () and carries its tag through execution.
When passed to sendToServer (), the tool inspects the
tag to determine whether sensitive data has reached the sink.
Fig. 1(b) shows a typical shadow memory layout.

C. Type Confusion Vulnerability

Type confusion is a memory corruption vulnerability that
occurs when an object is accessed under an incompatible
type. Although managed runtimes like the JVM enforce type
safety, such guarantees can be bypassed, enabling low-level
reinterpretation of object layouts without runtime errors [14].
These vulnerabilities are widespread and persistent: they affect
95% of OpenJDK versions (1.6-21.0.4) and 71% of Android
versions (2.3—15), with lifespans up to nine years [15].

A common case involves treating memory allocated as one
class as another with a conflicting layout. As illustrated in
Fig. 1(b), an object of class A (with two int fields) is rein-
terpreted as class B, which defines a 1ong field overlapping
both A.p_tag and A.g. A write to B.p modifies both
fields in a single operation, potentially corrupting adjacent
taint tags stored in shadow memory. Due to JVM alignment
rules, padding may shift the offset, but the overlapping region
remains vulnerable to misuse.

III. APPROACH
A. Attack Preconditions

Dynamic taint analysis (DTA) tools associate metadata with
program variables using layout-dependent schemes such as
shadow memory. These mechanisms assume a stable corre-
spondence between data and tags—a guarantee that breaks
under type confusion. Shadow memory, in particular, relies
on offset-based addressing schemes and is thus vulnerable to
layout reinterpretation.

Managed runtimes like the JVM or Android Runtime en-
force type safety via bytecode verification and runtime checks
(e.g., checkcast, instanceof), but these do not validate
field-level memory access. Once compiled, field loads become
raw pointer arithmetic (e.g., » (base + offset)), with no
dynamic layout enforcement. This creates a blind spot: if an
object is reinterpreted using a type with wider or overlapping
fields (e.g., a long over two ints), a single write can corrupt
both data and its taint tag. Since the runtime trusts the declared
type, it allows unchecked writes that bypass taint tracking
without violating control flow or triggering runtime errors. Our
attack hinges on this mismatch: taint tools assume structural
integrity, but the runtime does not enforce it at the field level.

B. ConfuseTaint

Fig. 2 shows the overall workflow of our approach, CON-
FUSETAINT. First, we inject an existing type confusion vulner-
ability into a known program (@), and then apply a dynamic
taint analysis tool to instrument the program (). Next, the
instrumented program is executed on a standard runtime
environment such as the JVM or Dalvik (®), which traces data
flows from source to sink. During execution, CONFUSETAINT
rewrites the taint tag, thereby disrupting the propagation of
taint metadata. Finally, the DTA tool analyzes the execution
and reports all observed tainted paths (@).

During execution, CONFUSETAINT exploits type confusion
to reinterpret memory layout and block taint propagation.
Specifically, a wide-field write (e.g., to a long) targets a

class A {

int p; int p_tag;
int g; int g _tag;

}

class B {
long p; int p_tag;

}

public static void main() {
A a = new A(); B b = new B();
a.p = getUserDatal(); // Source
typeConfusion(a, b);
b.p = 0L; // Overwrites a.p_tag
sendToServer (a.p) ; // Sink

}

(a) Source Code of Taint Analysis Bypassed by Type confusion

Address View as A View as B
0x1000
header header
0x100c - ddi
in addin
0x1010 - 2 P 9
int p_tag
0x1014 - long p
intq
0x1018 op— e
in a in a
0x101c e et

(b) Layout reinterpretation under type confusion

Fig. 1: Taint tracking from source to sink: (a) source code, (b) memory layout. The _tag fields are inserted by the taint
tracking tool as part of its instrumentation and are not present in the original source code.

ConfuseTaint Dynamic Analysis Tool

f 1
1 1 ! 1

(oo) ' .
i I% [=) ! Source! i
<P UL St — i R =5
N . \ ' !
Source 1 vulnerable ! ilnstrumented i l ! Report@ !
Code 1 Pprogram ! ' Program @ i X Tag ! !
! [' Overwrite 1 1
s | : e i
1 1 [E— | 1
- ro I AN Sink !

S

L@ b !
1Vulnerability ;! Runtime @ :

Fig. 2: Overview of the attack process

region expected to hold narrower fields (e.g., two ints and
their taint tags), corrupting both data and adjacent metadata in
one operation.

Fig. 1(a) shows a simplified example. Line 11 demonstrates
a type confusion vulnerability where a B reference is coerced
to point to an A instance. As a result, the assignment b.p =
0L on line 12 performs an 8-byte write that silently clears the
taint tag of a.p, without violating type checks or triggering
runtime errors. While this example uses integer and long
fields, similar attacks apply across other primitive types and
references, depending on layout and alignment.

This attack breaks a core assumption in shadow-memory-
based DTA systems: that taint tags, placed at fixed offsets near
program data, are protected by type-safe access patterns. By
exploiting type confusion, an attacker can reinterpret object
layouts and issue writes that overwrite both data and taint
tags in a single operation. This violates layout-based isolation
and bypasses taint tracking without triggering memory or type
safety violations.

IV. EVALUATION
We conclude our evaluation by answering the following
research question:

« RQ: What is the effectiveness of our approach in bypass-
ing dynamic taint analyzers?

A. Experimental Setup

We evaluate our approach on two dynamic taint analysis
tools: Phosphor [2] and TaintDroid [3] , covering the JVM
and Dalvik VM respectively. Experiments for Phosphor were
conducted on MacOS 14.6.1 using Oracle JDK 1.8.0_111 and
commit e 38e7d6 of the Phosphor repository. TaintDroid used
a pre-built Android 4.3 image on an Ubuntu 24.04.1 emulator.
Both tools were used in their latest available configurations
without source-level modifications.

B. Experimental Design

We designed two versions of the program to evaluate
whether dynamic taint analysis tools can track sensitive data
flows and whether our attack can bypass such tracking. The
baseline version implements a direct flow from a source to a
sink. In TaintDroid, sources and sinks are defined explicitly in
the code; in Phosphor, they are configured via a file. A taint
flow is considered detected if the tool emits a verifiable prop-
agation report—e.g., a policy violation warning in TaintDroid
or a taint trace log in Phosphor.

We then constructed attack variants of each test program
by injecting type confusion vulnerabilities while preserving
original program semantics. For Phosphor, we exploit CVE-
2017-3272 [16], which allows object memory to be interpreted
under incompatible types. We allocate two objects to the same
memory region and perform a forged field access to overwrite
a taint tag. For TaintDroid, we apply a previously reported
vulnerability [17] by modifying the smali-level intermediate
representation and setting the IS_CLASS_VERIFIED flag
in classes.dex to bypass Dalvik’s bytecode verifier. The
modified application is then recompiled into an APK and
executed in an emulator running TaintDroid.

If the tool detects the baseline but fails on the attack variant,
it indicates that taint tracking was bypassed without affecting
program semantics—demonstrating that our technique breaks
DTA while preserving original program behavior.

C. Results

In both tools, the baseline programs correctly triggered
taint flow detection: each tool identified sensitive data flowing

from source to sink and raised the expected security alert.
In contrast, the attack programs—constructed using our type
confusion technique—preserved the same data flow but did not
trigger any alerts. Table I summarizes the results. A checkmark
(V") denotes that the tool failed to detect the taint flow in the
presence of our attack, even though the same flow was detected
in the corresponding baseline case.

This indicates that our approach effectively removes or
corrupts taint labels at runtime, bypassing the core detection
mechanisms of dynamic taint analysis. The fundamental rea-
son our attack succeeds is that taint tags stored in shadow
memory implicitly rely on type safety and consistent memory
interpretation at runtime. When type confusion violates these
assumptions, tags become vulnerable to unintended over-
writes. This highlights that DTA tools embedding metadata
in program memory, particularly those using shadow memory
alignment, are broadly vulnerable to similar attacks.

Tool Name Last Update Runtime Bypassed
Phosphor 2024 Oracle JDK 1.8.0_111 v
TaintDroid 2013 Dalvik VM (Android 4.3) v

TABLE I: Results of CONFUSETAINT on Bypassing Dynamic
Taint Analysis Tools

V. DISCUSSION AND MITIGATION
A. Corrupting Taint Metadata: Beyond Type Confusion

While our attack focuses on type confusion, it is not the
only way to corrupt taint metadata. Other memory safety
issues — such as buffer overflows, format string vulnerabilities,
or unsafe operations via JNI or Unsafe — can similarly
overwrite taint tags stored in shadow memory or on the stack,
without altering the associated program data. Even reflective
access to taint-related fields (as seen in MirrorTaint [18]) may
permit tag manipulation through plugin mechanisms or debug
interfaces. These risks extend beyond the JVM and Android
Runtime. Dynamic languages such as JavaScript, Python, and
.NET CLR, as well as native platforms using binary instru-
mentation [4], [7], associate metadata with runtime values in
similar ways. In all these settings, violations of layout integrity
— through union casting, pointer reinterpretation, or reflective
access — may silently corrupt taint tracking mechanisms.

B. Mitigation Strategies

To protect taint tracking under such threats, we outline
several directions:

Isolated Metadata Storage: Replacing shadow memory
with external tag maps decouples metadata from program
memory. This separation prevents layout-based overwrites and
allows language-level protection (e.g., access modifiers). The
trade-off is additional runtime overhead from explicit lookups.

Runtime Validation: Runtimes can enforce type-safe lay-
out access by rechecking class metadata during field loads.
While standard JVMs rely on static verification, enforcing
dynamic layout checks — as a defense against forged object
views — would block many attacks, including ours.

Platform Hardening: Applying security patches (e.g., for
CVE-2017-3272) prevents known memory reinterpretation at-
tacks. Safer languages like Rust eliminate many root causes
of taint bypass, offering stricter control over memory access
and type safety.

Hardware Assistance: Capability-based architectures like
CHERI [19] can enforce pointer bounds and object integrity at
hardware granularity. These systems prevent reinterpretation
of data layouts, but require platform support and nontrivial
runtime integration.

VI. RELATED WORK

Phosphor [2] tracks taint in JVM programs using byte-
code instrumentation and shadow variables. TaintDroid [3]
extends taint tracking to Android by propagating labels across
variables, methods, and IPC within the Dalvik VM. Mirror-
Taint [18] mirrors JVM state in a separate heap for non-
intrusive taint tracking without altering program metadata.
Other systems such as ViaLin [20], DisTA [21], and Tain-
tART [22] extend taint tracking to distributed or compiler-
instrumented contexts. Despite architectural differences, these
tools assume type-safe field access and stable object lay-
outs—assumptions our attack explicitly violates.

Prior work on obfuscation has explored techniques to dis-
rupt program analysis or enforce security through misdirection.
Early studies [23]-[25] investigated Java bytecode obfuscation
via polymorphism, identifier renaming, and opaque predicates.
More recent efforts [26], [27] translated bytecode to native C
or XOR-masked transformations to obscure type information.
In Android, tools like DroidChameleon [28] evaluated how
reflection-based obfuscation weakens anti-malware systems,
while studies such as [29] empirically compared obfuscation
usage in benign and malicious apps.

While prior work focuses on how obfuscation impacts static
or dynamic analysis, few explore active attacks on runtime
enforcement. We demonstrate that type confusion can subvert
taint tracking by breaking type safety assumptions.

VII. CONCLUSION

In this paper, we present CONFUSETAINT, the first approach
to bypass dynamic taint analysis in Java and Android by
exploiting type confusion vulnerabilities. By reinterpreting
memory layouts, CONFUSETAINT disrupts taint tracking while
leaving program execution unchanged. Our evaluation shows
that state-of-the-art tools like Phosphor and TaintDroid fail
to detect leaks under our attack, exposing a blind spot in
how DTA systems associate metadata with program state. We
argue that taint tracking must account for adversarial memory
reinterpretation. Future research should explore alternative
metadata placement, enforce stronger runtime type integrity,
and harden language-level abstractions against layout-level
inconsistencies.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

[1

—

[2

—

[3

[t

[4

=

[5]

[6

=

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

“Deserialization of untrusted data — owasp foundation,” accessed:
2025-05-11. [Online]. Available: https://owasp.org/www-community/v
ulnerabilities/Deserialization_of_untrusted_data

J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow
in commodity jvms,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications. Portland Oregon USA: ACM, Oct. 2014, pp. 83-101.
W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones,”
ACM Trans. Comput. Syst., vol. 32, no. 2, pp. 5:1-5:29, Jun. 2014.

J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity
Software,” Journal contribution, 2005.

V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propagation
for Java,” in 21st Annual Computer Security Applications Conference
(ACSAC’05). Tucson, AZ, USA: IEEE, 2005, pp. 303-311.

D. Chandra and M. Franz, “Fine-Grained Information Flow Analysis
and Enforcement in a Java Virtual Machine,” in Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007). Miami
Beach, FL, USA: IEEE, Dec. 2007, pp. 463-475.

J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the 2007 International Symposium on
Software Testing and Analysis. London United Kingdom: ACM, Jul.
2007.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM Conference on Computer
and Communications Security, ser. CCS "07. New York, NY, USA:
Association for Computing Machinery, Oct. 2007, pp. 116-127.

Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Privacy scope:
A precise information flow tracking system for finding application
leaks,” University of California, Berkeley, EECS Department, Tech.
Rep. UCB/EECS-2009-145, 2009. [Online]. Available: http://www.eecs
.berkeley.edu/Pubs/TechRpts/2009/EECS-2009- 145.html

Cloud-based protections — play protect. [Online]. Available: https:
//developers.google.com/android/play-protect/cloud-based- protections
X. Fu and H. Cai, “Scaling application-level dynamic taint analysis to
enterprise-scale distributed systems,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion
Proceedings. Seoul South Korea: ACM, Jun. 2020, pp. 270-271.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings of
the 11th ACM Conference on Computer and Communications Security,
ser. CCS ’04. New York, NY, USA: Association for Computing
Machinery, Oct. 2004, pp. 298-307.

R. Karim, F. Tip, A. Sochtrkovd, and K. Sen, “Platform-Independent
Dynamic Taint Analysis for JavaScript,” IEEE Transactions on Software
Engineering, vol. 46, no. 12, pp. 1364-1379, Dec. 2020.

W. Bonnaventure, A. Khanfir, A. Bartel, M. Papadakis, and Y. L. Traon,
“Confuzzion: A Java Virtual Machine Fuzzer for Type Confusion Vul-
nerabilities,” in 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS), Dec. 2021, pp. 586-597.

“On the presence of java type confusion vulnerabilities,” Software
Engineering and Security Group (SES), Umea University, accessed
2025-08-19. [Online]. Available: https://github.com/software-engineeri
ng-and-security/TypeConfusionStats

National vulnerability database - cve-2017-3272. [Online]. Available:
https://nvd.nist.gov/vuln/detail/cve-2017-3272

J. Bremer, “Abusing dalvik beyond recognition,” Hack.lu, Technical
Report Hack.lu 2013, 2013, accessed: 2025-08-18. [Online]. Available:
http://archive.hack.lu/2013/AbusingDalvikBeyondRecognition.pdf

Y. Ouyang, K. Shao, K. Chen, R. Shen, C. Chen, M. Xu, Y. Zhang, and
L. Zhang, “MirrorTaint: Practical Non-intrusive Dynamic Taint Track-
ing for JVM-based Microservice Systems,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). Melbourne,
Australia: IEEE, May 2023, pp. 2514-2526.

R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmental-

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

ization,” in 2015 IEEE Symposium on Security and Privacy, May 2015,
pp- 20-37.

K. Ahmed, Y. Wang, M. Lis, and J. Rubin, “ViaLin: Path-Aware
Dynamic Taint Analysis for Android,” in Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. San Francisco CA USA: ACM,
Nov. 2023, pp. 1598-1610.

D. Wang, Y. Gao, W. Dou, and J. Wei, “DisTA: Generic Dynamic
Taint Tracking for Java-Based Distributed Systems,” in 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). Baltimore, MD, USA: IEEE, Jun. 2022, pp. 547-558.
M. Sun, T. Wei, and J. C. Lui, “TaintART: A Practical Multi-level
Information-Flow Tracking System for Android RunTime,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. Vienna Austria: ACM, Oct. 2016, pp. 331-
342.

C. Collberg, C. Thomborson, and D. Low, “A Taxonomy of Obfuscating
Transformations,” Tech. Rep., 1997.

Y. Sakabe, M. Soshi, and A. Miyaji, “Java Obfuscation Approaches
to Construct Tamper-Resistant Object-Oriented Programs,” IPSJ Digital
Courier, vol. 1, pp. 349-361, 2005.

M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano,
and P. Tonella, “Towards experimental evaluation of code obfuscation
techniques,” in Proceedings of the 4th ACM Workshop on Quality of
Protection. Alexandria Virginia USA: ACM, Oct. 2008, pp. 39-46.
D. Pizzolotto and M. Ceccato, “[Research Paper] Obfuscating Java Pro-
grams by Translating Selected Portions of Bytecode to Native Libraries,”
in 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), Sep. 2018, pp. 40-49.

D. Pizzolotto, R. Fellin, and M. Ceccato, “OBLIVE: Seamless Code
Obfuscation for Java Programs and Android Apps,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE Computer Society, Feb. 2019, pp. 629—
633.

V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android anti-malware against transformation attacks,” in Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’13. New York, NY, USA:
Association for Computing Machinery, May 2013, pp. 329-334.

S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
and K. Zhang, “Understanding Android Obfuscation Techniques: A
Large-Scale Investigation in the Wild,” in Security and Privacy in
Communication Networks, R. Beyah, B. Chang, Y. Li, and S. Zhu, Eds.
Cham: Springer International Publishing, 2018, vol. 254, pp. 172-192.

