RUSPATCH: Towards Timely and Effectively
Patching Rust Applications

Yufei Wu, and Baojian Hua*

School of Software Engineering, University of Science and Technology of China, China
Suzhou Institute for Advanced Research, University of Science and Technology of China, China
wuyf21 @mail.ustc.edu.cn, bjhua@ustc.edu.cn
* Corresponding author.

Abstract—Despite the fact that Rust is designed to be a secure
programming language for system programming, it is still
vulnerable and exploitable due to its inclusion of an unsafe
sub-language. However, existing studies on Rust security only
focus on static detection or rectification of vulnerability, but
ignore the problem of timely and effective rectifications of
vulnerabilities dynamically.

In this paper, to fill this gap, we present RUSPATCH, the first
infrastructure to timely and effectively patch vulnerable Rust
applications. RUSPATCH consists of two main phases: static
partitioning and dynamic patching. In the static partitioning
phase, RUSPATCH divides the candidate program into target
code and patch candidates via a customized compiler. During
the patching phase, RUSPATCH dynamically validates and
applies the security patch once a vulnerability is detected.
To realize the whole process, we tackled three technical
challenges of language discrepancy, efficiency issues, and
security threats. We have designed and implemented a software
prototype for RUSPATCH, and have conducted extensive ex-
periments to evaluate its effectiveness, performance, overhead,
and usefulness. Experimental results demonstrated that RUS-
PATCH is effective in patching off-the-shelf Rust applications
including real-world Rust CVEs, and the extra overhead RUS-
PATCH introduced is less than 3.28% and thus insignificant.
Furthermore, RUSPATCH is easy to incorporate into existing
Rust applications without any manual interventions.

Keywords—Rust, Vulnerability, Dynamic patching

1. INTRODUCTION

Programming languages directly impact the reliability, safety,
and correctness of software, and their features impact the
prevalence of bugs in actual systems. Rust [1] is an emerging
programming language designed for constructing safe system
software. To achieve its design goals of both security and
efficiency, Rust introduced a group of novel language features
(e.g., ownership [2], borrow [3], reference [4], and explicit
lifetime [5]), to guarantee security without sacrificing exe-
cution efficiency. Due to its technical advantages, Rust has
gained popularity in the past several years, and has been used
successfully in a wide spectrum of domains such as operating
system kernels [6], cloud services[7], network protocol stacks
[8], runtimes [9], databases [10], and blockchains [11].

While Rust makes an important step towards secure system
programming, it is, unfortunately, still vulnerable and ex-
ploitable, due to its inclusion of an unsafe sub-language
[12] to support arbitrary low-level operations and to of-
fer more programming flexibility. Specifically, the unsafe
Rust programs might be vulnerable as they not only disable
compiler static checking but also bypass necessary runtime
checking, thus may defeat Rust’s security guarantees leading
to security issues. For example, in Rust CVE-2020-35879 [13],
the unsafe raw_slice_mut method caused a data race, due
to its incorrect use of lifetime in unsafe code. As another
example, in Rust CVE-2018-1000810 [14], the buffer access
buf [i] triggered out-of-bounds (OOBs) memory issues, as
unsafe Rust does not check accesses against buffer range,
leading to memory corruptions [15] [16]. Therefore, given the
increasingly important roles of Rust in system programming,
a comprehensive study of Rust security is essential.
Recognizing this need, researchers have recently conducted a
significant amount of research efforts (e.g., empirical security
study [17] [18] [19], vulnerability detection [20] [21] [22]
[23], security enhancement [24] [25], and formal verification
[26] [27]), to address Rust security issues. While these re-
search efforts made considerable progress in securing Rust
applications, they, unfortunately, have severe limitations: they
only focus on static detection or rectification of vulnerabilities,
but ignore the problem of dynamic software updating (DSU),
in which a running vulnerable Rust application is rectified
with a security patch without stopping or restarting the target
application. DSU is indispensable and important in today’s
7/24 world, such as online services (e.g., Firecracker [28],
Amazon AWS newly deployed virtualization service in Rust)
cannot be stopped or restarted for the unexpected delay that an
offline patching strategy might incur. For example, according
to Gartner [29], the average cost of IT downtime is $5,600
per minute and the average enterprise downtime can reach
$300,000 per hour. Even in non-online service scenarios, DSU
is also important and valuable, given the normal urgency to
rectify vulnerabilities [30].

Challenges. Unfortunately, while DSU has been extensively
studied and has shown promising potential [30] [31] [32], to
the best of our knowledge, no such systems exist for Rust. Yet
developing an effective DSU infrastructure for Rust faces three
key challenges: C1: language discrepancy caused by Rust’s

unique language features absent from other languages; C2:
efficiency issues brought by existing studies to the rectified
systems, which make these studies infeasible to Rust designed
with the goal of runtime efficiency; and C3: security threats
of the patches in binary forms in existing studies, which might
defeat Rust’s security guarantees.

Our work. In this paper, to fill the gap, our goal is to
investigate techniques and infrastructures to solve the Rust
dynamic software updating problems. To achieve this goal, we
propose the first framework dubbed RUSPATCH, to patch vul-
nerable Rust applications timely and effectively. Specifically,
the workflow of RUSPATCH consists of two phases: a compile-
time partitioning phase, and a dynamic patching phase. In the
first phase, RUSPATCH splits the candidate Rust program into
two components: target code and patch candidates, both of
which are then compiled to binaries and deployed on the cloud.
In the second phase, once a vulnerability is encountered or de-
tected, RUSPATCH validates the target patch for vulnerability
rectification, and then compiles the patch to loadable modules,
which are sent to the cloud to substitute the existing vulnerable
modules.

To realize the whole process, we tackle the three afore-
mentioned technical challenges. C1: language discrepancy:
to address C1, we designed and implemented a delegatecall
proxy pattern generator by modifying Rust’s official rustc
compiler extensively to add customized compiler passes. C2:
efficiency issues: to address C2, we designed and implemented
an automatic and transparent multithreading code injector to
generate and inject dynamic updating thread, by utilizing
Rust’s concurrency mechanism. C3: security threats: to ad-
dress C3, we designed a dynamic code validator to automat-
ically validate the patches before compiling and deploying
them, by utilizing both the official Rust borrow checker [33]
and state-of-the-art checking tools such as Clippy [34], and
Miri [35].

We have implemented a software prototype for RUSPATCH,
and have conducted extensive experiments on CloudLab [36]
to evaluate it. To conduct the evaluation, we also created
two datasets: a microbenchmark RusBench consisting of
vulnerable Rust programs adapted from real-world Rust CVEs,
and a macrobenchmark containing large and real-world Rust
applications.

With this prototype and datasets, we evaluate RUSPATCH in
terms of effectiveness, performance, overhead, and usefulness.
We first applied RUSPATCH to RusBench, and experimental
results demonstrated that RUSPATCH is effective in patching
all Rust vulnerabilities effectively, showing a 100% success
rate. Second, to evaluate the performance of RUSPATCH,
we conducted experiments on RusBench, which showed that
RUSPATCH is efficient in processing Rust programs in line
with rustc. Third, to evaluate the overhead RUSPATCH
introduced, we measure the execution time of the target Rust
application before and after using RUSPATCH, and experimen-
tal results demonstrated that the runtime overhead RUSPATCH
introduced is less than 3.28%. Finally, a developer study shows
RUSPATCH is easy to be incorporated into real-world Rust

applications, without any developer intervention or manual
code rewriting in applying patches.

Contributions. To the best of our knowledge, this work
represents the first step towards addressing Rust dynamic
software updating problems. To summarize, this work makes
the following contributions:

o Infrastructure design. We proposed the first infrastructure
dubbed RUSPATCH, to patch Rust applications dynamically.

o Prototype implementation. We implemented a prototype
for RUSPATCH, to deploy patches for Rust applications
timely and effectively.

« Extensive evaluations. We conducted extensive experi-
ments to evaluate RUSPATCH in terms of effectiveness,
performance, overhead, and usefulness, on real-world Rust
CVEs and practical Rust applications.

Outline. The rest of this paper is organized as follows. Section
2 presents the background for this work. Section 3 introduces
the motivation for this work as well as the threat model.
Section 4 presents the overall design and challenges. Sections
5 and 6 present the design and implementation of RUSPATCH,
respectively. Section 7 presents the experiments to evaluate
RUSPATCH. Section 8 discusses the limitations of this work
as well as directions for future work. Section 9 discusses the
related work, and Section 10 concludes.

2. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work, by introducing the Rust
programming language (§ 2-A), the unsafe Rust (§ 2-B),
and dynamic software updating (§ 2-C).

2.1. Rust

Brief history. Rust [1] is an emerging and rapidly growing
programming language. Initially designed in 2006, Rust was
first publicly released in 2010 [37]. Designed to be a safe
system programming language, Rust has grown into a pro-
duction quality language after its first stable version 1.0 in
2015, and has shown promising potential in building secure
system applications.

Advanced features. Rust emphasizes both safety and effi-
ciency. On the one hand, Rust guarantees safety by introducing
a group of novel language features such as ownership [2],
borrow [3], reference [4], and explicit lifetime [5], which are
checked at compile-time. On the other hand, Rust achieves
high efficiency by embracing a zero-abstraction design phi-
losophy and by inheriting most language designs from C.
Specifically, Rust eliminates the potential runtime penalty of
automatic memory management (e.g., garbage collectors [38]),
by incorporating an ownership-based memory management
mechanism ensuring each value has a unique owner [39].
Wide applications. Due to its safety and efficiency advan-
tages, Rust is gaining more popularity with wide applications
in recent years. Rust was not only rated as the “most popular
programming language” on Stack Overflow in 2022 [40], but
also gaining more adoptions in the industry (e.g., Microsoft
[41], Google [42], and Linux [43]), to build secure applications

in a large spectrum of domains. Specifically, Rust is increas-
ingly important in building online services (e.g., Mononoke
[44], Firecracker [28], Discord [45], and Azure IoT Edge
[46]). In the future, a desire to secure cloud infrastructures
without sacrificing efficiency will make Rust a more promising
language.

2.2. Unsafe Rust

Necessity. Unsafe Rust [12] is a sub-language of Rust and
serves as a security loophole to bypass Rust’s static and
dynamic security checking. The unsafe Rust is indispensable
for two key reasons: first, it is used to bypass Rust’s strict
static analysis, which is often overly conservative (e.g., binding
an IP address to a socket is unsafe in Rust, as it is generally
impossible to determine statically whether the given IP address
is valid). Second, unsafe Rust is extensively used in low-
level system programming (e.g., converting an integer to a
driver address), in which security is sacrificed to achieve
programming feasibility.

Scenarios. Unsafe Rust has five usage scenarios [12]: 1) raw
pointer dereference, where raw pointers might point to invalid
memory, breaking Rust borrowing checking rules; 2) unsafe
functions or methods, when they contain unsafe operations; 3)
mutable static variables, which may introduce data races and
thus are unsafe; 4) unsafe traits, when at least one of its
methods is unsafe; and 5) unions, as Rust cannot guarantee
the correct types of data in a specific union instance.
Ubiquity. The unsafe code is ubiquitous in the Rust
ecosystem. For example, in Rust’s official package repository
crates.io, 23.6% of the crates contain unsafe code [19].
As another example, 54% of Servo’s code [47] (a flagship
Rust project of Web browser engine from Mozilla) is unsafe
[18]. Despite the fact that unsafe Rust is ubiquitously used,
it breaks the security guarantees of Rust and might lead to
security vulnerabilities [48].

2.3. Dynamic Software Updating

Concept. Dynamic software updating (DSU) technology dy-
namically updates the functionality of a running application,
without stopping or restarting the application. In today’s 7/24
world, DSU is critical for non-stoppable and high-available
systems.

Key techniques. Existing DSU techniques can be classified
into two categories: source- and binary-level, depending on
whether or not the source code is required. On the one hand,
a source-level DSU [49] [50] first converts the target source
program into updatable forms, by inserting indirection jumps
with the aid of a specialized compiler. At runtime, these
jumps are updated to point to the newest version of the
code. On the other hand, a binary-level DSU [51] [52] inserts
the aforementioned indirection jumps directly into the target
binaries by binary rewritings [53], which is preferable when
source code is absent.

Wide applications. Due to its advantages of both high avail-
able guarantees and timely rectifications, DSU has been widely
used in recent years (e.g., Linux kernel [54] [32], Android

Cloud attacl\'
Existing [t fron(buffer: Buffer) —> Vec<us> { (1) Complle' H
Workflow let mut slice = and o: 1
Buffer::allocate(buffer.len); Debl
let len = buffer.copy_to(&mut slice); cploy -
esaTeT 'l Application |}
Vec::from_raw_parts(slice.as_mut_ptr(), :
len, slice.len()) H 1
i i
' I
3]
RUSPATCH e y
Workflow RUSPATCH Patch attack
. Cloud failed!
Compile [----7 it

fn from(buffer: Buffer) —> Vec<u8> {
let mut slice =

Buffer::allocate(buffer.len); H
let len = buffer.copy_to(&mut slice) 1
unsate { H
‘ delegate-call(..) 1
i
1

and 0

}

Figure 1: A motivating example demonstrating the technical
overview of RUSPATCH, with a real-world CVE-2019-16140.

kernel [55], and IoT devices [56]). Specifically, DSU is being
deployed on clouds. For example, Orthus [57] is a novel DSU
infrastructure to update KVM/QEMU instances.

3. MOTIVATION AND THREAT MODEL

In this section, we first present the motivation for this study
via a concrete example (§ 3-A), then the threat model (§ 3-B).

3.1. Motivation

High availability is one of the most important goals of cloud
service. However, while cloud service providers make tremen-
dous efforts to avoid downtime, security updates on cloud
are frequent which might introduce unexpected downtime,
reducing the availability of cloud service. Worse yet, the
unexpected downtime might lead to a significant loss [29].
To put the discussion in perspective, in Fig. 1, we present the
existing process of how vulnerabilities might be rectified in a
cloud scenario and also challenges during this process, with
a running example on CVE-2019-16140. We then show how
a DSU system, like RUSPATCH in this work, addresses these
challenges.

In the original process, the source code (@) was compiled into
binaries and then deployed to the cloud (@). The Rust source
code might be vulnerable due to its inclusion of the unsafe
sub-language. Indeed, the source code demonstrated a use-
after-free (UAF) vulnerability we adapted from a previously
reported CVE-2019-16140 [58]. As a result, a malicious
adversary can inject arbitrary code into the cloud for execution
by exploiting the buffer overflows (i.e., slice buffer in this
example). To fix such vulnerabilities, the source program is
first modified by applying a security patch, then compiled and
deployed on the cloud to substitute the old binaries, which
might lead to unexpected downtime.

To address the downtime challenge, RUSPATCH first compiles
the (vulnerable) source code into partitioned sources, via a
customized compiler we built (®). The partitioned sources are
then compiled and deployed to the cloud as two components:
the binary and loadable module (@). Once a vulnerability is

detected, RUSPATCH takes both the source code and the secu-
rity patch, then validates the patch for security and functional
correctness, before compiling them to binaries and deploying
them on the cloud to substitute the outdated loadable modules
(®).

3.2. Threat Model

This work focuses on the problem of dynamical patching Rust
applications timely and effectively. Therefore, we make the
following assumptions in the threat model for this work.

We assume that the cloud execution environment, running the
Rust applications, has standard protections. For example, the
underlying hardware or operating systems provide standard
protections such as Data Execution Prevention (DEP) [59],
Stack Canaries [15], and Address Space Layout Randomiza-
tion (ASLR)[60]. Furthermore, the Rust compilers (both the
original and the one we customized) have not been com-
promised by malicious adversaries so the binaries generated
from the compilers are trustworthy. It should be noted that
although operating systems and compiler security studies are
very important, they are independent of and thus orthogonal
to the study in this work. Furthermore, those research fields
can also benefit from the research progress in this work.

We assume that the safe sub-language of Rust (i.e., without the
unsafe keyword) is safe and will not pose a security threat
to the application being investigated. For example, safe Rust
code does not trigger out-of-bounds buffer access, as every
buffer access is checked against the buffer length. Existing
Rust security studies demonstrated that all reported memory
bugs in Rust are related to unsafe code. Thus, such an
assumption is reasonable in reality.

We assume that the unsafe sub-language of Rust is vulnera-
ble and susceptible to attacks. For example, as Fig. | shows, an
attacker may exploit a vulnerability in unsafe code to trigger
buffer overflows due to the lack of buffer range checking.
We assume that the network between the host and cloud is
protected [61] [62] and trustworthy so that the security binary
patches as network traffic will not be sniffed or spoofed [63].
Although network security is an important research field, it is
independent of and thus orthogonal to the study in this work.

4. OVERALL DESIGN AND CHALLENGES

In this section, we present an overview and design goals of
RUSPATCH (§ 4-A), its architecture (§ 4-B), and existing
challenges and our solutions (§ 4-C).

4.1. Overview and Design Goals

We have two goals guiding the overall design of RUSPATCH
architecture: 1) full program or vulnerability support; and
2) fully automated. First, the architecture of RUSPATCH
should support all language features and different kinds of
vulnerabilities. This goal is important for RUSPATCH to be
applied to any Rust programs, as well as existing or potential
vulnerabilities. Otherwise, the usefulness of RUSPATCH is
significantly reduced, if it can only be applied to a limited

RUSPATCH Architecture

— °%
- £
Thread
Injection

®-°0 °n h 0@ B

Rust Code

| Binary |

Patch Compile
Candidate and { (Loadable)}

Deploy i Module !

DelegateCall
Proxy
Generator

{_ Application |
= _ ° Pach ©) @ O
-, T T lee I T IS y
S = ,
Valerabilty | Ziicaion Patch Co;:g'le N\

Checking Tools
]

Validator

Report T @ ida

Deploy

Figure 2: RUSPATCH architecture.

set of Rust programs or specific vulnerabilities. Second, RUS-
PATCH should be fully automated in converting Rust programs,
validating and applying patches. Human interventions are only
required to supplement the automated process (e.g., for failure
root cause analysis).

4.2. The Architecture

Guiding by these goals, we present, in Fig. 2, the overall
architecture of RUSPATCH, consisting of four key modules.
First, the delegatecall proxy pattern code generator (@) takes
as input the original (and potentially vulnerable) Rust source
code, and outputs a modified code by rewriting the original
code with delegatecall proxy patterns. Second, the thread
injection module (@) takes as input the delegatecall proxy
injected code, and outputs both target and patch candidates
by generating and injecting updating threads automatically.
Third, RUSPATCH compiled (®) both the target and patch
candidates into binaries and loadable modules, respectively,
and then deployed them to the cloud as an online service.
Fourth, the vulnerability rectification module (@) takes as
input the original Rust code as well as security patches,
then automatically rectifies vulnerabilities, and outputs patched
source code. Finally, the patch validator (@) validates the
security and functional correctness of the application after
the vulnerability has been rectified, then compiles the patches
into loadable modules and deploys (®) them on the clouds to
substitute the outdated loadable modules.

In section 5, we will discuss the design of each module in
detail, respectively.

4.3. Challenges and Our Solutions

Developing an effective DSU infrastructure for Rust needs to
address the following three challenges (§ 1).

C1: Language discrepancy. Rust’s unique features which
are absent from other languages (e.g., ownership [2], and
explicit lifetime [5]), pose challenges to existing source
transformation-based DSU techniques, due to the nontriv-
ial code transformation efforts required. For example, the
most extensively evaluated DSU Ginseng [49] for C program
requires substantial modifications (i.e., 60k LoC) to the C
compiler toolchain, which is nontrivial and complex to adapt
to Rust’s compiler rustc [64] directly.

Solution. To address this challenge, we propose a delegatecall
proxy pattern approach to support the Rust programming

language, by modifying and extending Rust’s official compiler
rustc via a customized compiler pass on abstract syntax
trees. This process partitions the Rust source code into the
target and the patch candidates, in which the latter ones can
be timely updated when vulnerabilities are detected. We will
present the design details in section 5-B.

C2: Efficiency issues. Rust’s efficiency design goal makes
it challenging to leverage indirection-based DSU techniques
[65] [66] directly, due to their considerable runtime penalties.
For example, the widely evaluated DSU Upstare [50] incurs
a significant overhead of 38.2%, due to the unwinding and
rewinding code that its compiler adds to all functions.
Solution. To address this challenge, we propose a concurrent
programming-based approach. Specifically, we have designed
and implemented a multithreading injector that injects a dy-
namic updating thread into the target application automatically
and transparently. To offer maximum efficiency benefits and
programming flexibility, we adaptively support concurrent
programming in RUSPATCH. Although message passing-based
concurrency [67] is another choice, we focus on shared
memory-based concurrency [68]. We will present the design
details in section 5-C.

C3: Security threats. Rust’s safety design goal makes existing
binary rewriting-based DSU techniques [32] infeasible, for two
key reasons. First, it is intrinsically difficult to validate the
security patches in binary forms. Specifically, binary patches
do not have the type information of Rust (e.g., ownership[2]),
hence, violations of type safety are difficult to detect at
the binary level. While typed binaries (e.g., typed assembly
language [69], proof-carrying code [70], or recent WebAssem-
bly [71]) are promising in providing type safety, no typed
binaries have been investigated for Rust (to the best of our
knowledge). Second, prior studies [72] have demonstrated
that patches themselves written by developers might be faulty
or buggy, leading to unintentional damages to the system
being patched [73]. Therefore, to guarantee the security and
trustworthiness, the target patches should be validated before
being applied. Unfortunately, to the best of our knowledge, no
such techniques have been thoroughly investigated for Rust.
Solution. To mitigate the security threats, we propose an auto-
matic source-level validation approach, to validate the security
patches before applying them. On the one hand, the validator
validates the security patch in terms of security guarantees,
by leveraging Rust’s official checkers (e.g., borrow checkers
[33], and type checker [74]) as well as state-of-the-art checking
tools (e.g., Clippy [34], Rudra [22], and Miri[35]). On the
other hand, we leverage differential testings and regressions
to validate the functional correctness of the target application,
preventing the introduction of potential bugs. We present the
design details in section 5-D.

5. RUSPATCH DESIGN

In this section, we present the design of RUSPATCH in detail,
by introducing the patching candidate analysis algorithm (§
5-A), the delegatecall proxy pattern generation (§ 5-B), auto-
mated thread injection (§ 5-C), and patch validation (§ 5-D),

Constant c
BasicBlock b € Z
Variable x € A{zo,x1,%2,...}
Type T == bool|i8|u8|il6] ...
BinOp & = +|—| x|/l <]|=1...
Operand 0 = const ¢ | move p | copy p
Place p == x| xp|pn]|pl]
Rvalue r u= ol&olog®oyloasT
Statement s = p=r|storagelLive(r)
| storageDead(z)
Terminator ¢t := f(x) | return |drop(p) | assert(o)
| goto(b) | switch(o, (b1,...,b,))
Function = [unsafe| fny(z:7){s t}
Program = 7

Figure 3: Core syntax of the Rust language.

respectively.

5.1. Patch Candidate Analysis

Rust core syntax model. To partition the source code into
target code and patch candidates, we first need to identify
patch candidates and then perform partitions by rewriting Rust
programs. We conduct such an identification and partition on
Rust abstract syntax tree (AST) data structures via customized
compiler passes. To describe this process rigorously, we first
present, in Fig. 3, a core syntax of Rust we designed, following
prior work [21]. Specifically, a Rust program a consists of a
list of function f, each of which has an optional unsafe key
word indicating its explicit declaration of safety, followed by
a list of statements s terminated with a terminator ¢.

A statement s may be an assignment p = r, or Rust-specific
storageLive and storageDead marking the start and
end of a variable z’s lifetime, respectively.

A terminator ¢ can be of distinct syntactic forms: 1) a function
invocation f(x); 2) a function return; 3) a deletion drop;
4) an assertion assert; 5) an unconditional jump goto; or
6) a conditional branch switch.

A place p stands for a location that can be assigned to, which
includes a variable z, pointer references, tuple field selection,
or array elements. A right value r consists of operands o,
reference &, binary operations, and type castings. Both right
values r and operands o have Rust-specific syntactic features.
For example, an operand o can be marked by either move or
copy, representing the move or copy semantics of Rust [75]
[76], respectively.

To simplify the presentation, we have omitted some features,
such as pattern matching or control flow. However, these
features can be added without any technical difficulty.

Patch candidate analysis algorithm. With this core syntax
for Rust, we present, in Algorithm I, how a Rust program
is analyzed and then converted to use a delegatecall proxy
pattern. The key idea for this algorithm is to: 1) identify all

Algorithm 1 : Delegatecall proxy pattern generation

Input: P: The Rust program

Output: (P’,U): P’ is Delegatecall proxy injected Rust pro-
gram; and U is a set of patch candidates

1: procedure GEN-DELEGATECALL(P)

2 P =P

3 U, C' =IDENTIFY-PATCH-CANDIDATE(P)

4: for each function f € U do

5: P — = f

6 for each call site h € C do

7 P’= ADDDELEGATECALL(P', h)

8

9

return P’ U
: procedure IDENTIFY-PATCH-CANDIDATE(P)
10: U,C=10
11: A = BUILDAST(P)
12: G = BUILDCALLGRAPH(P)
13: for each unsafe function f € A do
14: vu=f
15: for each call graph edge (h — f) € G do
16: CU=h

17: return U, C

unsafe functions f and their corresponding call sites; and
2) rewrite all such call sites to use delegatecall proxy patterns.
To implement this key idea, the GEN-DELEGATECALL() func-
tion takes as input a Rust program P, calculates and returns
delegatecall proxy injected Rust program P’ as well as a set of
patch candidates U. This function consists of three key steps:
first, this function calls IDENTIFY-PATCH-CANDIDATE() to
generate a set of unsafe functions U and a set of their call
sites C' (line 3). Second, for each function f in the set U, the
algorithm removes the function from the program, obtaining a
result program P’ (line 4 to 5). Third, for each call site A in the
set C, the algorithm rewrites this call h with a corresponding
delegatecall proxy pattern (line 6 to 7), whose details will be
discussed next (§ 5-B).

The function IDENTIFY-PATCH-CANDIDATE() takes as input
the Rust program P, and calculates a set of patch candidates
U with their corresponding call sites U. Specifically, the
procedure builds an AST A as well as a call graph G from
the Rust program P (line 10 to 12), which are then traversed
to calculate and return a patch candidate set U and a call site
set C (line 13 to 17).

This algorithm is efficient, for an AST of n functions and
m call sites, the computational complexity is O(n * m) for
patch candidate analysis, and is O(m) for delegatecall proxy
generation.

5.2. Delegatecall Proxy Pattern Code Generator

The addDelegateCall() function in Algorithm | rewrites the
original Rust AST, to introduce proxy patterns. To formalize
this process of AST traversal and rewriting, we introduce a
group of syntax-indexed translation functions [-]7, [-]s, and
[-]: to translate a function f, a statement s, and a terminator

Update Point

main Run
thread

Spawn

Notify

updating

1
1
1
:
thread ;

Watch for update

Figure 4: The updating process of RUSPATCH, with the aid of
an auxiliary updating thread.

t, respectively.
First, the translation [-J; of a function f is defined by
recursively invoking the translation [-]s and [-];.

—

[[unsafe] y(r x){s t}]; = [unsafe] y(r z){[s]s mt}(l)

Second, the translation [-]; is defined on a statement s, which
does not change the syntactic forms of s.

[[P = T]]s =p=r (2)
[storageLive(x)]s = storageLive(x) 3)
[storageDead(z)]s = storageDead(x) 4)

Finally, the translation function [-]; translates a terminator ¢,
for which only rules for function invocation, drop, and goto
are presented while others are omitted for clarity.

1 [F = tmasmer) @) fev

U@l = { . FPEIC
[drop(p)]: = drop(p) (6)
[goto(b)]: = goto(b) @)

To translate a patch candidate function invocation f(x) (i.e.,
f € U), we load the function’s value dynamically with
“findSym” and then invoke it; otherwise, for other functions
(i.e., f & U), the invocation remains unchanged. We have
deliberately left the concrete implementation of the function
findSym abstract here, to allow for flexibility in practical
implementation. In the next section (§ 6), we will showcase
an implementation strategy based on dynamically loaded mod-
ules.

5.3. Updating Thread Injection

Dynamic software updating may introduce potential runtime
overhead to the target program being updated, due to the
dynamic monitoring and applying of available patches. To mit-
igate this issue, we have designed a strategy to automatically
inject an updating thread into the target program.

We present, in Fig. 4, the overall process of injecting an updat-
ing thread. When the main thread starts executing, it spawns
a new updating thread watching for potential vulnerability
patches. After identifying such patches, the updating thread
validates (to be discussed in § 5-D) and updates the patches,
before notifying the main thread. Finally, the main thread
loads and executes the updated function upon receiving the
notifications.

As the main thread executes concurrently with the updating
thread, only thread spawn and notification may incur extra
runtime overhead to the main thread. Furthermore, as dynamic
software updating might not occur very frequently, the extra
overhead is low in practice as our experimental results demon-
strated (§ 7-F).

5.4. Patch Validation

A patch itself may be vulnerable or buggy [72] [77]. Hence,
we designed a patch validator to validate and test the patches
before deploying them. The patch validator performs: 1)
security verification; and 2) functional correctness checking.
First, RUSPATCH utilized an architecture of security plugins
to guarantee the security of the target patch. Specifically, the
plugins include not only the official borrow checker from the
Rust compiler, but also third-party state-of-the-art vulnerability
detection tools, to determine whether vulnerabilities have been
successfully fixed without introducing new ones. Second, to
guarantee the functional correctness of the target application,
RUSPATCH utilized both a differential testing approach to
guarantee that the functionality of the application has remained
unchanged before and after the patch is applied. Furthermore,
RUSPATCH also utilized a regression testing approach to
ensure the normal functionality has not been altered by the
patch, by leveraging the test cases distributed with the project
(if any). If either test fails, the patch is rejected and test results
are returned to developers for further investigation.

6. IMPLEMENTATION

We have implemented a prototype system for RUSPATCH
using Rust, which has been distributed in our open source.

Delegatecall proxy generator and thread injector. We im-
plemented the delegatecall proxy pattern generator and thread
injector by developing a customized Rust compiler leveraging
an open source parsing library syn [78]. We implemented the
VisitMut trait in the syn package to borrow and visit its
nodes while traversing the abstract syntax tree. We implement
the visit_item_mut method to detect whether a Rust
function is unsafe (i.e., marked by unsafe or contains an
unsafe code block). Unsafe functions are then extracted and
encapsulated into a Rust submodule as patch candidates, which
are further compiled into a dynamic link library. We also
implemented the visit_expr_mut method to iterate over
each expression and check whether the function call in it
invokes a patch candidate. We implemented the thread injector
using the modified method from the Rust standard library.
Dynamic loading and concurrency. We implemented dy-
namic loading at runtime by leveraging a Rust open source
library 1ibloading [79], which provides a group of APIs to
load dynamic libraries to use the functions and static variables
in them. Specifically, we use the API Library: :new<P:
AsRef<OsStr>>(f: P) to find and load a dynamic library
from the file £. Our prototype utilized the Rust shared memory
concurrency model to implement both the dynamic library
and patched function pointers. To guarantee the correctness

of concurrent accesses, we utilized the Rust’s RwLock syn-
chronization primitives [80], to protect the shared variables
between the main and the updating thread.

Patch validator and testing. We have made use of an archi-
tecture of security plugins to implement the patch validator.
Specifically, we have incorporated diverse security checking
tools into our prototype implementation including not only the
official rustc borrow checker [33] and Clippy [34], but also
open-source state-of-the-art checking tools including Miri [35]
and Rudra [22]. Among these tools, Clippy is a static analysis
tool that detects common security issues, whereas Miri detects
potential memory safety issues by symbolically executing the
code. We have leveraged the tools cargo-referendum [81] and
Rust regression [82], for differential and regression testings,
respectively. It should be noted that the plugin architecture is
extensible, making the incorporation of other tools straightfor-
ward.

7. EVALUATION

In this section, we conduct experiments to evaluate RUS-
PATCH.

7.1. Research Questions

By presenting the experimental results, we mainly investigate
the following research questions:

RQ1: Effectiveness. As RUSPATCH is proposed to automat-
ically deploy patches for Rust applications, is it effective in
fixing vulnerabilities?

RQ2: Compiling performance. What is the performance of
RUSPATCH to compile Rust projects?

RQ3: Runtime overhead. As RUSPATCH is designed to
rectify vulnerabilities dynamically, does RUSPATCH incur
additional runtime overhead to the Rust applications being
patched?

RQ4: Usefulness. As RUSPATCH is introduced to help end
Rust developers, is it useful to help them deploy patches?

7.2. Experimental Setup

We conduct all experiments on the publicly available Cloud-
Lab cloud infrastructure testbed [36] (we include in our
open source the CloudLab [83] profile that automatically
instantiates the software environment used in this evaluation).
Our experiments utilize a CloudLab c220g5 server configured
with two Intel Xeon Silver 4114 10-core CPUs running at
2.20 GHz, 192 GB RAM, and a dual-port Intel X520 10Gb
NIC. The machine runs 64-bit Ubuntu 20.04 Linux with kernel
version 5.4.0. In all experiments, we disable hyperthreading,
turbo boost, and frequency scaling to reduce the variance in
benchmarking.

7.3. Dataset

To conduct the evaluation, we selected and created two
datasets: 1) microbenchmarks; and 2) real-world and large
Rust applications, which are included in our open source.

Microbenchmarks. Answering the above research questions
requires a vulnerability dataset as a ground truth, however,

TABLE I: The RusBench benchmark, and its experimental results.

CVE number Package Type Description Patched? Original(s) RUSPATCH(s)
CVE-2017-1000430 base64 OOB Buffer overflow in calculating the buffer v 0.538 0.582
size.
CVE-2018-1000810 std OOB Integer overflows leading to an out of v 0.553 0.559
bounds write.
CVE-2019-15551 smallvec DF Double free for certain grows with the cur- v 0.844 0.897
rent capacity.
CVE-2019-16140 isahc UAF From function returns freed memory. v 0.522 0.557
CVE-2019-16880 linea DF Double free in trait implementation of panic. v 0.838 0.906
CVE-2020-25794 sized-chunks UNINIT Clone can have a memory-safety issue upon v 0.596 0.611
a panic.
NA Servo UAF Object dropped earlier and pointer used v 0.591 0.593
later.
NA Servo UNINIT Panic when font face name is not available. v 0.543 0.572
NA Tock UNINIT Allocator dropping uninitialized memory. v 0.876 0.882
NA Redox UNINIT Using uninitialized memory. v 0.552 0.563

TABLE II: Macro benchmarks of 5 real-world projects.

Project Domain LoC |#Files S(E;;lslll(i)
RisingWave [86] Database 291,017 | 1,471 44
Polars [87] Data Process | 138,764 | 832 17.3
Wasmer [88] | Wasm runtime | 350,040 | 762 15.3
Diem [89] Blockchain |300,399 | 1,570 16.7
Rocket [90] Web 31,902 | 315 20.7

such a dataset does not exist (to the best of our knowledge). To
this end, we took the first step of manually creating RusBench,
a dataset containing real-world vulnerabilities of diverse types,
which we created by inspecting Rust CVE [84], RustSec [85]
as well as previous papers [17] [48].

As shown in TABLE I, our focus in creating this dataset is on
the diversity of vulnerabilities. We selected ten representative
micro-benchmarks by analyzing various vulnerability behavior
patterns, including out-of-bounds access (OOB), use-after-free
(UAF), double-free (DF), and uninitialized memory (UNINIT)
(shown in the 3rd column Type). As these microbenchmarks
were derived from prior research papers, they have undergone
thorough analysis and we contend that our dataset embodies
a broad spectrum of vulnerability types, encompassing critical
ones. Furthermore, we are continuing to expand it by including
more benchmarks covering other vulnerability types.
Real-world applications. For better benchmark representa-
tiveness, we choose real-world Rust projects that: 1) have
1,000+ stars, which indicates popularity—a criterion used in
prior work [91]; 2) are frequently updated and maintained; 3)
are cloud service related; and 4) contain unsafe code.
According to these selection criteria, we present, in TABLE II,

five real-world applications from diverse domains: 1) Rising-
Wave [86]: a distributed SQL database for stream processing;
2) Polars [87]: a data processing library for Rust; 3) Wasmer
[88]: a lightweight WebAssembly (Wasm) runtime; 4) Diem
[89]: a distributed blockchain system; and 5) Rocket [90]: an
async Web framework for Rust.

7.4. RQ1: Effectiveness

To answer RQ1 by demonstrating the effectiveness of RUS-
PATCH, we conduct experiments by evaluating RUSPATCH
against the microbenchmark RusBench.

We first compiled and executed the vulnerable programs
in RusBench, whose execution caused program crashes for
specific input triggering the bugs. Next, we processed these
benchmarks with RUSPATCH, then compiled and executed
them for a second time. During program execution, RUSPATCH
patched the target Rust program with the security patches we
supplied. The experimental results demonstrated that RUS-
PATCH successfully patched all these benchmarks (column
“Patched?” in TABLE I), without terminating or restarting
the vulnerable programs.

Summary. These experiment results demonstrated that RUS-
PATCH is effective in deploying patches for real-world CVEs
and program bugs automatically.

7.5. RQ2: Compiling Performance

To answer RQ2 by investigating RUSPATCH’s performance in
compiling Rust projects, we conducted experiments to measure
the time RUSPATCH spent in compilation. Each program is
compiled for 10 rounds to calculate an average.

We present, in TABLE I, the average compiling time to pro-
cess each Rust program (column RusPatch). The maximum
compiling time for RUSPATCH is 0.906 seconds. We further

TABLE III: Execution time overhead.

Operations | Original (ms) | RUSPATCH(ms) |Overhead

unchecked|1709.97 + 3.19(1722.36 4+ 14.05| +0.72%
offset [1424.64 + 3.01| 1434.14 &+ 2.15 | +0.67%
copy 252.61 £ 1.30 | 260.92 + 0.58 | +3.28%

compared with the compiling time with the original rustc
compiler (column Original), and observed the difference is
negligible. Furthermore, the static compiling time not only
introduces no runtime penalties, but also is in par with prior
work [21] on Rust static analysis.

Summary. RUSPATCH is efficient in compiling Rust pro-
grams, in line with the official compiler rustc.

7.6. RQ3: Runtime Overhead

To answer RQ3 by investigating the overhead RUSPATCH
introduced to the target program, we chose microbenchmarks
to measure the performance changes of the target program
before and after deploying RUSPATCH. Following prior work
[92], we selected microbenchmarks to measure overhead, as
performance benefits or losses would likely be small and
difficult to observe due to the ambient noise present in an
application-level benchmark.

We testified micro benchmarks for three usage scenarios
where unsafe is extensively used to improve performance
[17]: 1) traversing an array with unsafe memory access
slice: :get_unchecked () with no boundary checking
(abbr. as unchecked in TABLE III); 2) traversing an array
by raw pointers ptr::offset (); and 3) unsafe memory
copy ptr::copy_nonoverlapping () (abbr. as copy).
Benchmarks 1) and 2) each include 100 million operations,
while benchmark 3) includes a billion operations. Compiler
optimizations were disabled to ensure that these operations
were not optimized to distort performance.

We present, in TABLE I1I, the results. We ran each benchmark
10 times and reported the median time for the original pro-
gram, as well as for RUSPATCH. The last column Overhead
is calculated by Overhead = RUSPATCH/Original — 1.
Summary. The experimental results demonstrated that the
overhead RUSPATCH introduced ranges from 0.67% to 3.28%,
and thus is insignificant.

7.7. RQ4: Usefulness

Developer Background. To quantify the manual effort needed
to patch Rust programs and evaluate the usefulness of RUS-
PATCH, we conducted a developer study. We hired six Rust
developers to conduct this study, and all of them have extensive
experience in using Rust: they have been using Rust as their
primary developing language for more than 3 years. However,
they are not familiar with developing or using a DSU system.
Therefore, we can quantify the effort required for a normal
Rust developer to use a DSU system like RUSPATCH in this
work.

TABLE IV: Average time (in minutes) to finish each task,
without and with RUSPATCH.

Taskl (m) Task2 (m)

CVE M! \ R? M! \ R?
CVE-2017-1000430[93] | 39.3 | 4.2 | 123 2.6
CVE-2019-16140[58] 357 | 2.8 12 1.8
CVE-2019-16881[94] 477 | 2.8 | 393 2.1
CVE-2020-25794 [95] 26.1 | 2.1 | 23.3 1.7

I and ? are abbreviations of Manual, and RUSPATCH,

respectively.

Methodology. Throughout our study, we asked the developers
to finish two tasks: 1) converting three vulnerable programs
to DSU programs, manually or using RUSPATCH; 2) deploy-
ing patches for running Rust programs, manually or using
RUSPATCH. The two tasks target different scenarios: the first
task measures the efforts required to convert a Rust program
to a dynamically updatable version, while the second task
demonstrates efforts in validating and deploying patches. For
all tasks, we measured the time required by the developer to
finish the task.

We present, in TABLE 1V, the time used to finish the two
tasks, respectively.

Converting to a DSU program. To conduct the evaluation,
we wrote four programs by adapting four real-world CVEs
with diverse complexity and sizes (in terms of lines of code):
1) CVE-2017-1000430 [93] (356 LoC); 2) CVE-2019-16140
[58] (212 LoC); 3) CVE-2019-16881 [94] (534 LoC); and 4)
CVE-2020-25794 [95] (136 LoC).

We first provided developers with a short description of the
delegatecall proxy pattern and asked them to convert the
given vulnerable programs into delegatecall proxy pattern. The
developers required an average of 43 minutes to convert the
source code into a delegatecall proxy pattern code.

Next, we asked to finish this task using RUSPATCH. Since
RUSPATCH does not require any prior knowledge of delegate-
call proxy pattern, developers were able to convert a correct
DSU program in a maximum of 4.4 minutes.

Dynamic deployment of patches. We provided developers
with both the already converted DSU Rust program and a
security patch, and asked them to deploy the patch to the
running DSU program.

In manual deployment, the developers needed to manually
check whether the patch was correct and whether the func-
tionality of the source program had changed, then compiled
it into a dynamic loadable module and deployed it onto the
CloudLab. They spent 23.3 minutes on average to finish this
task.

Next, developers used RUSPATCH to automate the patch
validation and deployment. Due to the RUSPATCH’s advantage
of full automation, the time used to finish this task is less than
2.6 minutes.

Summary. These experimental results demonstrated the prac-
tical usefulness of RUSPATCH to end Rust developers, who

TABLE V: Build time and generated binary sizes for real-
world projects, without and with RUSPATCH.

Program Build Time (s) Size (MB)
Original [RUSPATCH | Original | RUSPATCH
RisingWave | 280.41 281.44 1809.31 1810.08
Polars 36.37 36.76 927.38 927.98
Wasmer 587.99 598.88 11.54 11.62
Diem 186.18 188.82 477.61 470.62
Rocket 43.85 46.08 111.69 112.58

might even have no prior knowledge or experience with
dynamic software updating.

7.8. Real-world Applications

To further investigate the usefulness of RUSPATCH to real-
world Rust applications, we conducted experiments on large
and in-the-wild Rust applications, as presented in TABLE II.
As these benchmarks come with no ground truth, we thus
took the fault injection [96] approach, a technique of software
testing by introducing faults to the code being tested.

To realize this process, we intentionally introduced a piece of
unsafe code into the project’s original source code, making
it vulnerable. We then compiled it to obtain an unsafe version
of binary: prog.unsafe. We then utilized RUSPATCH to
transform the unsafe source code into a DSU-enabled binary:
prog.dsu. We then deployed the two versions onto Cloud-
Lab, our evaluation platform, for evaluation.

We first evaluated the effectiveness of RUSPATCH on the
real-world applications, and the results demonstrated that
RUSPATCH patched the introduced vulnerabilities successfully.
We then measure the build time of the original rustc
compiler and RUSPATCH, and the generated binary sizes,
for these real-world applications. We present, In TABLE V,
a detailed comparison of build time and binary sizes. The
experimental results demonstrated that the difference in build
time between rustc and RUSPATCH is negligible, and the
difference between generated binary sizes is insignificant.
Summary. RUSPATCH is effective and useful to real-world
Rust programs, by introducing insignificant build time and
binary size differences.

8. DISCUSSION

In this section, we discuss some limitations of this work, along
with directions for future work. It should be noted that this
work represents the first step towards timely and effectively
patching Rust applications.

Binary patching. RUSPATCH is designed to support source-
level patching, but does not support binary patching when
the source code is absent. However, binary patching Rust is
difficult, as Rust, being a young language, does not have a
standard application binary interface. In the meanwhile, as
current Rust compiler uses LLVM [97] as its backend, hence
it is interesting to investigate intermediate representation level

patching techniques, by leveraging LLVM instrumentations
(e.g., Instrew [98], or Dbill [99]). We leave it for future work.
Human interventions. Although RUSPATCH is designed to
be fully automated, manual interventions are still needed in
two scenarios: 1) vulnerability rectification; and 2) failure
inspections. Specifically, RUSPATCH requires a patch to rectify
a vulnerability, which is often crafted by a developer manually.
While manual bug fixing is an established software engineer-
ing practice, recent studies have shown the promising potential
of automatic program rectifications [23], which we leave as an
important direction for future exploration.

Patching granularity. RUSPATCH applies patches on a func-
tion granularity. In the meanwhile, prior studies (e.g., stack
reconstruction [50], or binary rewriting [51]) showed promis-
ing potentials of fine-grained patching strategies on basic block
granularities. We leave this as a future direction to explore.

9. RELATED WORK

In recent years, there have been a significant amount of studies
on Rust security and dynamic software updating. However,
the work in this paper stands for a novel contribution to these
fields.

Rust security. The use of unsafe Rust has been extensively
studied. Evans et al. [18] conducted a large-scale empirical
study on the use of the unsafe mechanism in real-world
Rust applications. Qin et al. [17] conducted an empirical
study of 850 examples of unsafe code in real Rust programs
to propose common unsafe patterns. Astrauskas et al. [19]
studied empirically unsafe code usage scenarios in practice
by analyzing a large corpus of Rust projects.

Existing studies have made extensive use of static or dy-
namic analysis for vulnerability detection. SafeDrop[20] de-
tects memory corruption by performing alias analysis and taint
analysis on Rust MIR. MirChecker [21] statically detects run-
time crashes and memory safety vulnerabilities caused by dan-
gling pointers. Rudra [22] detects memory vulnerabilities by
running dataflow analysis and send/sync difference checking
algorithms on the Rust ecosystem. Rupair [23] automatically
repair Rust buffer overflow vulnerabilities caused by integer
overflows.

However, all of the above studies focus only on static vulnera-
bility detection and rectification, but do not consider dynamic
vulnerability rectification issues like our work.

Dynamic software updating. Ginseng [49] rewrote the pro-
gram’s C source code to support dynamic updates, by using
function indirection and type wrapping. Ksplice [54] analyzes
runtime updates at an object-code level, enabling automated
live-patch generation in many cases. UpStare [50] performs
source code-level conversion and uses the stack reconstruction
technique to update versions. DUSC [66] used proxy classes to
update Java programs at runtime by substituting, adding, and
removing classes. Orthus [57] copies the whole state of all
active VMs from the running hypervisor to a new hypervisor
to conduct hypervisor-level runtime patching.

However, all these studies cannot be applied to the Rust
language, due to the feature discrepancies between Rust and

other languages.

10.

CONCLUSION

In this work, we present RUSPATCH, the first framework to
timely and effectively patch Rust applications. RUSPATCH
consists of two main phases: static code partitioning and
dynamic patch deployment. We implemented a prototype for
RUSPATCH and conducted extensive experiments with it. Ex-
perimental results demonstrated that RUSPATCH is effective,
efficient, and useful. Overall, our work is a call to arms for
further hardening the Rust ecosystem, making the promise of
a secure programming language a reality.

REFERENCES

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

[12]
(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

“Rust Programming Language,” https://www.rust-lang.org/.

“What Is Ownership?” https://doc.rust-lang.org/book/ch04-01-what-is-
ownership.html.
“Borrowing,”
example/scope/borrow.html.
“References and Borrowing,” https://doc.rust-lang.org/book/ch04-02-
references-and-borrowing.html.

“Lifetimes - The Rust Programming Language,” https://doc.rust-
lang.org/book/ch10-03-lifetime-syntax.html.

“Tock Embedded Operating System,” https://www.tockos.org/.
“TTstack,” https://github.com/rustcc/TTstack.

“Smoltcp: A smol tcp/ip stack,” https:/github.com/smoltcp-rs/smoltcp.
“Tokio - An asynchronous Rust runtime,” https://tokio.rs/.

“TiKV: Distributed transactional key-value database, originally created
to complement TiDB,” https://github.com/tikv/tikv.

“Parity-ethereum: The fast, light, and robust client for Ethereum-like
networks,” https://github.com/openethereum/parity-ethereum.

“Unsafe Rust,” https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.
“CVE-2020-35879,” https://cve.mitre.org/cgi-
bin/cvename.cgi’name=CVE-2020-35879.
“CVE-2018-1000810,”
bin/cvename.cgi’name=CVE-2018-1000810.
C. Cowan, C. Pu, D. Maier, J. Walpole, and P. Bakke, “StackGuard: Au-
tomatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,”
7th USENIX Security Symposium (USENIX Security 98), 1998.

D. Larochelle and D. Evans, “Statically Detecting Likely Buffer Over-
flow Vulnerabilities,” in /0th USENIX Security Symposium (USENIX
Security 01), 2001.

B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Understanding memory
and thread safety practices and issues in real-world Rust programs,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. London UK: ACM, Jun. 2020,
pp. 763-779.

A. N. Evans, B. Campbell, and M. L. Soffa, “Is rust used safely by soft-
ware developers?” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. Seoul South Korea: ACM, Jun.
2020, pp. 246-257.

V. Astrauskas, C. Matheja, F. Poli, P. Miiller, and A. J. Summers,
“How do programmers use unsafe rust?” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1-27, Nov. 2020.
M. Cui, C. Chen, H. Xu, and Y. Zhou, “SafeDrop: Detecting Memory
Deallocation Bugs of Rust Programs via Static Data-flow Analysis,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 4, pp. 1-21, Oct. 2023.

Z. Li, J. Wang, M. Sun, and J. C. Lui, “MirChecker: Detecting Bugs
in Rust Programs via Static Analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security.
Virtual Event Republic of Korea: ACM, Nov. 2021, pp. 2183-2196.

Y. Bae, Y. Kim, A. Askar, J. Lim, and T. Kim, “Rudra: Finding Memory
Safety Bugs in Rust at the Ecosystem Scale,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles CD-ROM.
Virtual Event Germany: ACM, Oct. 2021, pp. 84-99.

B. Hua, W. Ouyang, C. Jiang, Q. Fan, and Z. Pan, “Rupair: Towards
Automatic Buffer Overflow Detection and Rectification for Rust,” in
Annual Computer Security Applications Conference. Virtual Event
USA: ACM, Dec. 2021, pp. 812-823.

https://doc.rust-lang.org/rust-by-

https://cve.mitre.org/cgi-

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

(32]

(33]
[34]
(35]
[36]
[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]
[45]

[46]
[47]

[48]

[49]

[50]

[51]

P. Liu, G. Zhao, and J. Huang, “Securing unsafe rust programs with
XRust,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. Seoul South Korea: ACM, Jun. 2020, pp.
234-245.

E. Rivera, S. Mergendahl, H. Shrobe, H. Okhravi, and N. Burow,
“Keeping Safe Rust Safe with Galeed,” in Annual Computer Security
Applications Conference. Virtual Event USA: ACM, Dec. 2021, pp.
824-836.

R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “RustBelt: Securing
the foundations of the Rust programming language,” Proceedings of the
ACM on Programming Languages, vol. 2, no. POPL, pp. 1-34, Jan.
2018.

V. Astrauskas, P. Miiller, F. Poli, and A. J. Summers, “Leveraging rust
types for modular specification and verification,” Proceedings of the
ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1-30, Oct.
2019.

“Firecracker,” https:/firecracker-microvm.github.io/.

“Ensure Cost Balances With Risk in High-Availability Data Centers,”
https://www.gartner.com/en/documents/3906266.

C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, General-Purpose Dynamic Software Updating for
C,” ACM Transactions on Programming Languages and Systems, vol. 36,
no. 4, pp. 1-38, Oct. 2014.

Z. Zhao, Y. Jiang, C. Xu, T. Gu, and X. Ma, “Synthesizing Object State
Transformers for Dynamic Software Updates,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1111-1122.

L. Zhou, F. Zhang, J. Liao, Z. Ning, J. Xiao, K. Leach, W. Weimer,
and G. Wang, “KShot: Live Kernel Patching with SMM and SGX,” in
2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). Valencia, Spain: IEEE, Jun. 2020, pp.
1-13.

“Rust borrow checker,” https://doc.rust-lang.org/1.8.0/book/references-
and-borrowing.html.

“Rust-clippy,” https://github.com/rust-lang/rust-clippy.

“Miri,” https://github.com/rust-lang/miri.

“CloudLab,” https://cloudlab.us/.

G. Hoare, “Project Servo,” http://venge.net/graydon/talks/intro-talk-
2.pdf, 2010.

R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook:
The Art of Automatic Memory Management, 1st ed. Boca Raton, FL:
CRC Press, 2016.

N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada
Letters, vol. 34, no. 3, pp. 103-104, Nov. 2014.

“Stack Overflow Developer Survey 2022
https://survey.stackoverflow.co/2022/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2022.

C. Catalin, “Microsoft to explore using Rust,”

https://www.zdnet.com/article/microsoft-to-explore-using-rust/, 2019.

“Rust in the Android platform,” https://security.googleblog.com/2021/04/rust-

in-android-platform.html.

“Rust in the Linux kernel,” https://security.googleblog.com/2021/04/rust-
in-linux-kernel.html.

“Mononoke,” https://github.com/facebookexperimental/eden.

“Why Discord is switching from Go to Rust,”
https://discord.com/blog/why-discord-is-switching-from-go-to-rust.
“IotEdge,” https://github.com/Azure/iotedge/tree/main/edgelet.

B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister,
J. Moffitt, and S. Sapin, “Engineering the Servo Web Browser Engine
Using Rust,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C), 2016, pp. 81-89.

H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu, “Memory-Safety
Challenge Considered Solved? An In-Depth Study with All Rust CVEs,”
ACM Transactions on Software Engineering and Methodology, vol. 31,
no. 1, pp. 1-25, Jan. 2022.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic
software updating for C,” ACM SIGPLAN Notices, vol. 41, no. 6, pp.
72-83, Jun. 2006.

K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction,” in Proceedings of the 2009
Conference on USENIX Annual Technical Conference, ser. USENIX’09.
USA: USENIX Association, Jun. 2009, p. 31.

H. Chen, J. Yu, R. Chen, B. Zang, and P-C. Yew, “POLUS: A POwerful
Live Updating System,” in 29th International Conference on Software

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Engineering (ICSE’07). Minneapolis, MN: IEEE, May 2007, pp. 271—
281.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “EVMPatch: Timely and
Automated Patching of Ethereum Smart Contracts,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 1289-1306.

M. Prasad, “A Binary Rewriting Defense Against Stack-based Buffer
Overflow Attacks,” in 2003 USENIX Annual Technical Conference
(USENIX ATC 03), 2003.

J. Arnold and M. FE. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the Fourth ACM European Conference on
Computer Systems - EuroSys '09. Nuremberg, Germany: ACM Press,
2009, p. 187.

Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
Android Kernel Live Patching,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1253-1270.

C. Niesler, S. Surminski, and L. Davi, “HERA: Hotpatching of Em-
bedded Real-time Applications,” in Proceedings 2021 Network and
Distributed System Security Symposium. Virtual: Internet Society, 2021.
X. Zhang, X. Zheng, Z. Wang, Q. Li, J. Fu, Y. Zhang, and Y. Shen,
“Fast and Scalable VMM Live Upgrade in Large Cloud Infrastructure,”
in Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
Providence RI USA: ACM, Apr. 2019, pp. 93-105.
“CVE-2019-16140,” https://cve.mitre.org/cgi-
bin/cvename.cgi’name=CVE-2019-16140.

S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in Microsoft Windows XP service pack 2, part 3: Memory
protection technologies,” 2004.

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings of
the 11th ACM Conference on Computer and Communications Security,
ser. CCS ’04. New York, NY, USA: Association for Computing
Machinery, Oct. 2004, pp. 298-307.

S. Lai, X. Yuan, J. K. Liu, X. Yi, Q. Li, D. Liu, and S. Nepal,
“OblivSketch: Oblivious Network Measurement as a Cloud Service,” in
Proceedings 2021 Network and Distributed System Security Symposium.
Virtual: Internet Society, 2021.

B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS attack protection
in the era of cloud computing and Software-Defined Networking,”
Computer Networks, vol. 81, pp. 308-319, Apr. 2015.

L. De Carli, R. Sommer, and S. Jha, “Beyond Pattern Matching: A Con-
currency Model for Stateful Deep Packet Inspection,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. Scottsdale Arizona USA: ACM, Nov. 2014, pp. 1378-1390.
“Rust Compiler Development Guide,” https:/rustc-dev-guide.rust-
lang.org/.

S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: A VM-centric approach,” ACM SIGPLAN Notices, vol. 44,
no. 6, pp. 1-12, Jun. 2009.

A. Orso, A. Rao, and M. Harrold, “A technique for dynamic updating of
Java software,” in International Conference on Software Maintenance,
2002. Proceedings. Montreal, Que., Canada: IEEE Comput. Soc, 2002,
pp. 649-658.

“Using Message Passing to Transfer Data Between Threads - The
Rust Programming Language,” https://doc.rust-lang.org/book/ch16-02-
message-passing.html.

“Shared-State Concurrency - The Rust Programming Language,”
https://doc.rust-lang.org/book/ch16-03-shared-state.html.

G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to typed
assembly language,” ACM Transactions on Programming Languages
and Systems, vol. 21, no. 3, pp. 527-568, May 1999.

G. C. Necula, “Proof-carrying code,” in Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL ’97. Paris, France: ACM Press, 1997, pp. 106—
119.

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with WebAssembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
Barcelona Spain: ACM, Jun. 2017, pp. 185-200.

Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:

[73]

[74]
[75]
[76]

(771

[78]
[79]
[80]
(81]
[82]
[83]

[84]
[85]
[86]
[87]
[88]
[89]
[90]

[91]

[92]

[93]
[94]
[95]
[96]

(971

[98]

[99]

ACM, Jul. 2015, pp. 24-36.

H. Kim, M. O. Ozmen, Z. B. Celik, A. Bianchi, and D. Xu, ‘“PatchVerif:
Discovering Faulty Patches in Robotic Vehicles,” in 32th USENIX
Security Symposium (USENIX Security 23), 2023.

“Type checking - Rust Compiler Development Guide,” https://rustc-dev-
guide.rust-lang.org/type-checking.html.

“The move semantics in Rust,” https://doc.rust-
lang.org/std/keyword.move.html.
“The copy semantics in Rust,” https://doc.rust-

lang.org/std/marker/trait. Copy.html.

M. Bohme and A. Roychoudhury, “CoREBench: Studying complexity of
regression errors,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014. New York, NY,
USA: Association for Computing Machinery, Jul. 2014, pp. 105-115.
“Syn - Parser for Rust source code,” https://crates.io/crates/syn.
“Libloading,” https://crates.io/crates/libloading.
“RwLock in std::sync - Rust,”
lang.org/std/sync/struct. RwLock.html.

“Cargo referendum,” https://crates.io/crates/cargo-referendum.

“Cargo regression,” https://crates.io/crates/regression.

R. Ricci, E. Eide, and C. Team, “Introducing CloudLab: Scientific in-
frastructure for advancing cloud architectures and applications,” ;login::
the magazine of USENIX & SAGE, vol. 39, no. 6, pp. 36-38, 2014.
“Rust CVE,” https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust.
“RustSec Advisory Database,” https://rustsec.org/.

“RisingWave,” www.risingwave.dev.

“Polars,” https://github.com/pola-rs/polars.

“Wasmer: The leading WebAssembly Runtime supporting WASIX,
WASI and Emscripten,” https://github.com/wasmerio/wasmer.
“Diem: A decentralized, programmable distributed
https://github.com/diem/diem.

“Rocket - Simple, Fast, Type-Safe Web Framework for Rust,”
https://rocket.rs/.

B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study of
programming languages and code quality in GitHub,” Communications
of the ACM, vol. 60, no. 10, pp. 91-100, Sep. 2017.

F. Rommel, C. Dietrich, M. Rodin, and D. Lohmann, “Multiverse:
Compiler-Assisted Management of Dynamic Variability in Low-Level
System Software,” in Proceedings of the Fourteenth EuroSys Conference
2019, ser. EuroSys '19. New York, NY, USA: ACM, Mar. 2019, pp.
1-13.

“CVE-2017-1000430,”
bin/cvename.cgi?name=CVE-2017-1000430.
“CVE-2019-16881,”
bin/cvename.cgi’name=CVE-2019-16881.
“CVE-2020-25794,”
bin/cvename.cgi’name=CVE-2020-25794.
Mei-Chen Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 1997.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., Mar. 2004, pp.
75-86.

A. Engelke and M. Schulz, “Instrew: Leveraging LLVM for high per-
formance dynamic binary instrumentation,” in Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’20. New York, NY, USA: Association for
Computing Machinery, Mar. 2020, pp. 172-184.

Y.-H. Lyu, D.-Y. Hong, T.-Y. Wu, J.-J. Wu, W.-C. Hsu, P. Liu, and P.-
C. Yew, “DBILL: An efficient and retargetable dynamic binary instru-
mentation framework using llvm backend,” in Proceedings of the 10th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE *14. New York, NY, USA: Association for
Computing Machinery, Mar. 2014, pp. 141-152.

https://doc.rust-

ledger,”

https://cve.mitre.org/cgi-
https://cve.mitre.org/cgi-

https://cve.mitre.org/cgi-

	Introduction
	Background
	Rust
	Unsafe Rust
	Dynamic Software Updating

	Motivation and Threat Model
	Motivation
	Threat Model

	Overall Design and Challenges
	Overview and Design Goals
	The Architecture
	Challenges and Our Solutions

	RusPatch Design
	Patch Candidate Analysis
	Delegatecall Proxy Pattern Code Generator
	Updating Thread Injection
	Patch Validation

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Dataset
	RQ1: Effectiveness
	RQ2: Compiling Performance
	RQ3: Runtime Overhead
	RQ4: Usefulness
	Real-world Applications

	Discussion
	Related Work
	conclusion

