
Towards Understanding Rust Documentation at an
Ecosystem Scale

Abstract—Rust, as an emerging programming language em-
phasizing both security and efficiency, introduced a novel doc-
umentation feature for developing runnable test cases, thereby
improving code quality, security, and maintainability. However,
it is still unknown whether and how Rust’s documentation is
used in practical Rust projects. Without such knowledge, Rust
language designers might miss opportunities to further improve
the language design, tool builders might build on incorrect
assumptions, and Rust developers might miss opportunities to
improve documentation quality, thus incurring higher mainte-
nance costs.

To fill the gap, in this paper, we conduct, to the best of our
knowledge, the first and most comprehensive empirical study of
Rust documentation at an ecosystem scale. We first designed
and implemented a novel software prototype dubbed RUSDOC,
to automatically analyze Rust documentation. Then we applied
RUSDOC to the entire dataset of 101,868 crates from the Rust
crate registry, crates.io, to conduct a quantitative study to
investigate the presence, completeness, size, and inconsistency
of documentation in the Rust ecosystem, complemented by
a qualitative study to investigate the root causes leading to
document-code inconsistencies. We obtained important findings
and insights from empirical results, such as: 1) the proportion of
crate homepages in the Rust ecosystem that include documenta-
tion is 44.31%; 2) the Rust ecosystem’s documentation ratio is
very low, with 37.24% of crates having no documentation and
only 13.23% of public items having documentation; and 3) the
main causes of document-code inconsistency are unsynchronized
updates of document code and errors caused by copy/paste
operations. We suggest that: 1) Rust language designers should
elaborate on the documentation specification; 2) checking tool
builders should provide effective tools to support developers;
and 3) Rust developers should prioritize documentation in the
early stages of development. We believe these findings and
suggestions will benefit Rust language designers, tool builders,
and Rust developers, by providing better guidelines for Rust
documentation.

Index Terms—Empirical study, Rust Documentation, Inconsis-
tency

I. INTRODUCTION

Rust [1] is an emerging programming language that guar-
antees both security and efficiency by incorporating advanced
language designs, a safe type system [2], and lifetime-based
memory management. Specifically, Rust introduces document
testing, a feature that allows developers to write Rust testing
code within documentation. During testing, the Rust testing
code in documents is compiled and executed, guaranteeing not
only the normal functionalities of the testing code but also the
consistencies between the testing code and the Rust code it
documents. Due to the benefits brought by its dual roles of

documentation and testing, Rust’s documentation is important
in improving the Rust project’s code quality, security, and
maintainability, bringing considerable engineering advantages
to Rust developers [3] [4].

To better guide the use of documentation, Rust provides
an official Rustdoc specification [5] as well as a community
guideline [6], proposing three important principles that any
Rust documentation should follow:

• H1: The front-page of any crate documentation should
have an introduction, an example code, and a detailed
description of its core functionality.

• H2: Every public item in a Rust crate, such as traits,
structs, enums, functions, methods, macros, and type def-
initions, should have an explanation of its functionalities.

• H3: Every public item (as aforementioned in H2) should
have an example code (i.e., testing code), which exercises
the expected functionalities.

We dub these principles the RustDoc hypothesis, as they
are important assumptions that Rust developers should have
followed.

Unfortunately, although the RustDoc hypothesis provides
important guidelines for Rust developers, it is still unknown
whether this hypothesis truly holds in practice. Instead, the
current Rust community has assumed optimistically that the
RustDoc hypothesis is already held (i.e., all RustDoc principles
have been followed). For example, crates.io [7], the
largest repository for Rust’s crates (Rust’s terminology for
packages), does not check the RustDoc hypothesis when new
crates are uploaded and registered. As a result, such a lack of
checking of RustDoc hypothesis might lead to software defects
such as confusion [8], inconsistencies [9] [10], vulnerabilities,
or even bugs [11] [12] [13] [14].

One may speculate that the study of documentation qualities
and inconsistencies is a solved problem, as there have been a
significant number of studies in this direction [15] [16] [17]
[18]. However, two issues still troubled Rust developers: first,
an ecosystem scale Rust documentation study is still lacking.
Rust documentation, whose initial goal is to provide not only
documentation but also unit testings and examples, is optional
and non-mandatory. Therefore, Rust does not provide any offi-
cial checking tool distributed with its official compiler rustc
[19]. Worse yet, to the best of our knowledge, there are no
third-party usable tools to check Rust’s documentation, due to
the intrinsic difficulty of checking Rust code in documentation.



Without such tools, it is difficult if not impossible to perform
an ecosystem scale study in an automated manner.

Second, analyzing Rust documentation is challenging. As
Rust documentation contains not only comments written in
natural languages but also arbitrary Rust code for testing,
a study of Rust documentation needs to analyze the Rust
testing code, with dedicated program analysis algorithms.
Furthermore, as document testing code generally serves as unit
testing, the program analysis algorithms should process the
Rust code being documented simultaneously. However, prior
studies on comment-code inconsistencies [15] [20] [21] [22],
utilizing techniques of natural language processing (NLP),
focused on only comment qualities or inconsistencies between
comment and code.

To this end, to study Rust documentation, several key
questions remain unanswered: What amount of documentation
exists in Rust crates? To what extent does the documentation
of Rust programs adhere to the community guidelines? What is
the size of documentation that Rust developers write? What is
the proportion of document-code inconsistencies in the Rust
ecosystem? What are the root causes leading to document-
code inconsistencies? Does the quality of Rust documentation
improve over time? What challenges do Rust developers
face? Without such knowledge, Rust language designers might
miss opportunities to further improve language design, tool
builders may build on wrong assumptions, and Rust developers
may miss opportunities to improve documentation quality and
reduce code maintenance costs.

Our work. To fill this gap, this paper presents, to the
best of our knowledge, the first and most comprehensive
empirical study of Rust documentation at an ecosystem scale
by utilizing a combination of quantitative and qualitative
approaches, in three steps. First, we designed and implemented
a novel software prototype dubbed RUSDOC. RUSDOC has a
crawler module to crawl all crates on Rust central registry
crates.io for subsequent analysis. Next, RUSDOC utilized
a quantitative approach to analyze each Rust crate in terms of
its documentation presence, completeness, size, and inconsis-
tency, in a fully automated manner.

Second, we created three datasets with 101,868 crates
crawled from Rust central registry crates.io, and then
applied RUSDOC on the datasets to conduct a quantitative
study, which is complemented by a qualitative study to further
investigate the root causes leading to documentation inconsis-
tencies.

Finally, to investigate developer challenges, we conducted
a developer survey to understand their perceptions of Rust
documentation and the challenges they encounter.

The empirical results give interesting findings and insights,
such as: 1) the proportion of crate homepages in the Rust
ecosystem that include documentation is 44.31%; 2) the Rust
ecosystem’s documentation ratio is very low, with 37.24%
of crates having no documentation and only 13.23% of pub-
lic items having documentation; and 3) the main causes of
document-code inconsistency are: unsynchronized updates of
document code and errors caused by copy/paste operations.

Based on the above empirical results, we suggest that:
1) Rust language designers should clarify the documentation
specification, and improve the official rustdoc tool [23] to
strengthen its detection capabilities; 2) checking tool builders
should develop specific tools to detect document-code incon-
sistencies more effectively; and 3) Rust developers should start
writing documentation in the early stages of development and
pay more attention to document testings.

Our findings, empirical results, tools, and suggestions will
benefit several audiences. Among others, they 1) provide sug-
gestions to Rust language designers to clarify Rust documen-
tation; 2) help checking tool builders to improve their tools;
and 3) help Rust developers to detect potential document-code
inconsistencies.

Contributions. To the best of our knowledge, this work
represents the first step toward a comprehensive understanding
of Rust documentation at an ecosystem scale. To summarize,
our work makes the following contributions:

• Empirical study and tools. We presented the first and
most comprehensive empirical study of Rust documen-
tation at an ecosystem scale, with a novel software
prototype we created dubbed RUSDOC.

• Findings and insights. We presented empirical results,
findings from the study, as well as implications for these
results, future challenges, and research opportunities.

• Open source. We make our tool and empirical
data publicly available in the interest of open science at
https://doi.org/10.5281/zenodo.10050847.

Outline. The rest of this paper is organized as follows.
Section II presents the background for this work. Section III
presents the research questions that guided our experiment and
the selection criteria for the Rust code that comprises our data
set. Section IV presents the approach we used to perform the
analysis. Section V presents empirical results, by answering
research questions. Sections VI and VII discuss implications
for this work, and threats to validity, respectively. Section VIII
discusses the related work, and Section IX concludes.

II. BACKGROUND

To be self-contained, in this section, we present the back-
ground knowledge for this work, by introducing the Rust
programming language (§ II-A), Rust documentation (§ II-B),
and a motivating example (§ II-C)

A. Rust

Brief history. Rust [1] is an emerging and rapidly growing
programming language. It was initially designed by Graydon
Hoare in 2006 and was first publicly released in 2010 [24]. Af-
ter a decade of development, Rust has grown into a production-
quality language with increasing popularity.

Advanced Features. Rust emphasizes both efficiency and
safety. First, Rust achieves efficiency by utilizing an explicit
memory management system based on ownership [25] and a
lifetime model, without any runtimes or garbage collectors.
The ownership and lifetime are both checked and enforced



1 /// Moves a file from one place to another 
2 /// with information about progress.
3 /// /* ... */
4 /// # Example
5 /// ```rust,ignore
6 /// /* ... */
7 /// move_file("dir1/foo.txt", "dir2/foo.txt", 
8 /// &options, handle)?;
9 /// ```

10 pub fn move_file_with_progress<P, Q, F>(
11 from: P, to: Q,
12 options: &CopyOptions, progress_handler: F,
13 ) -> Result<u64>
14 where
15 P: AsRef<Path>, Q: AsRef<Path>, 
16 F: FnMut(TransitProcess),

mismatch!

Explanation

Document 
Testing

Source
Code

Fig. 1: A motivating example.

statically at compile-time, eliminating potential runtime over-
heads. Second, Rust guarantees memory safety and thread
safety through its sound type system supplemented by numer-
ical runtime checks. Rust’s type system uses linear logic [26]
and aliased types [27] [28] to prevent memory vulnerabilities
such as dangling pointers, memory leaks, and double frees.

Wide applications. Rust, due to its efficiency and safety
advantages, is widely used in diverse domains, including
operating system kernels [29] [30], Web browsers [31], file
systems [32], cloud services [33], network protocol stacks
[34], language runtimes [35], databases [36], and blockchains
[37]. In the future, the desire to secure the cloud or edge
computing infrastructures without sacrificing efficiency will
make Rust a promising language.

B. Rust Documentation

Rust provides well-designed support for documentation. On
the one hand, Rust harnesses successful documentation designs
from other programming languages (e.g., Java [38], Python
[39], and JavaScript[40]), to design its own documentation
specification [5].

On the other hand, Rust provides specific documentation
methods and a simple-to-use tool called rustdoc, which
generates user-friendly HTML documents. Furthermore, to
simplify package building and management, Rust provides
the cargo tool [41] and eco-friendly package repositories
crates.io [7] and Docs.rs [42]. Consequently, Rust’s
documentation is comprehensive and effective, making the
learning curve for Rust programmers less steep.

Specifically, Rust offers a novel feature called document
testing which enables programmers to write Rust code within
documentation that is automatically executed when the test is
triggered. This new feature is not supported in other languages
such as Java.

C. Motivating Example

To put the discussion of Rust documentation in perspective,
Fig. 1 presents an illustration of a document-code inconsis-
tency in a real-world Rust crate (fs_extra [43]), which
is detected by our tool RUSDOC. In the figure, lines 1 to
3 comprise a short description of the function, referred to
as “explanation”, which supports H2; lines 4 to 9 constitute

a runnable example, denoted as “document testing”, which
supports H3; lines 10 to 16 display the source code.

However, the document testing is flawed due to the incorrect
invocation of a wrong function (line 7). Moreover, this flaw
will not be captured by existing tools, for two reasons: 1) it
uses the “ignore” flag, thus will not be executed by the test
tool rustdoc; 2) if the function move_file does exist, the
tests will erroneously invoke and test the wrong function.

III. METHODOLOGY

In this section, we present the research questions (§ III-A)
that guide our study, as well as the data selection criteria (§
III-B) for the Rust crates we chose and explored.

A. Research Questions

The main goal of our work is to conduct the first ecosystem-
scale empirical study of Rust documentation. To this end, we
aim to answer the following high-level questions:

• Does the Rustdoc hypothesis hold in practice?
• What challenges do Rust developers face?

In the following, we refine the above questions into six
research questions (RQs):

RQ1: Presence. What amount of document exists in Rust
crates?

All Rustdoc hypotheses emphasize the importance of doc-
umentation. The motivation for RQ1 is to check the presence
of Rust documentation, to explore whether the Rustdoc hy-
pothesis H1 holds.

RQ2: Completeness. To what extent does the documenta-
tion of Rust programs adhere to the community guidelines?

The second Rustdoc hypothesis specifies that the documen-
tation should have an explanation of their functionalities, and
the third hypothesis emphasizes the importance of examples.
The motivation for RQ2 is to examine the completeness of
the Rust documentation, further exploring whether H2 and
H3 hold.

RQ3: Size. What is the size of documentation that Rust
developers write?

Previous research [4] has demonstrated that redundant
documentation and duplicated content are significant factors
that affect the maintainability of documents. These findings
provide the motivation for exploring RQ3, which focuses on
estimating document size.

RQ4: Inconsistency. What is the proportion of document-
code inconsistencies in the Rust ecosystem? What are the root
causes leading to document-code inconsistencies?

RQ4 aims to quantify and understand the extent of the
inconsistency between code and documentation in the Rust
ecosystem. Since documentation is critical for developers to
understand what code does, inconsistencies lead to confusion,
errors during development and maintenance, and lost produc-
tivity. Identifying the root causes of inconsistencies is critical
to developing effective strategies to prevent or mitigate them.

RQ5: Evolution. Does the quality of Rust documentation
improve over time?
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Fig. 2: RUSDOC architecture.

The motivation for RQ5 was to investigate whether the in-
troduction of Rustdoc guidelines [6] and the increased focus on
the Rust programming language in the industry had changed
the practices of Rust developers.

RQ6: Rust Developer Perception. What challenges do
Rust developers face?

RQ6 aims to understand Rust developers’ perceptions about
documentation and the challenges they face when writing and
consulting it.

B. Data Selection

To understand documentation in the Rust ecosystem, we
analyzed real-world, publicly available Rust code. Three prin-
ciples are guiding our selection criteria for Rust projects.

First, to cover as wide a range as possible, we included
as many Rust crates as possible in our study. We selected
the latest versions of crates on the Rust community’s crate
registry (crates.io). Crates are the smallest unit of Rust
compilation that can be compiled into libraries or binaries,
depending on whether the crate includes a main() function.

Second, as with any open ecosystem, there is a long tail of
Rust crates that are small, largely unused, and may not reflect
the overall ecosystem. Therefore, we analyzed the popular and
actively-maintained crates in our dataset.

Third, to compare crates contributed by the larger Rust
community with crates developed by members of the Rust core
development team, we analyzed the Rust standard library. The
Rust standard library provides best practices for writing good
documentation and document testing.

IV. APPROACH

In this section, we present our approach to conduct the
empirical study. We designed and implemented a software
prototype RUSDOC to mine a large-scale registry of Rust
crates, to automatically generate the report of documentation
quality and document-code inconsistencies. We first introduce
the design goals of RUSDOC (§ IV-A), and its architecture (§
IV-B). We then discuss the design and implementation of the
crawler module (§ IV-C), the front-end module (§ IV-D), the
presence (§ IV-E), completeness (§ IV-F), size (§ IV-G), and
the inconsistency measurement module (§ IV-H), respectively.

A. Design Goals

We have two design goals for RUSDOC on large-scale Rust
datasets: 1) automation and 2) scalability. First, the study

should be fully automated, otherwise it is difficult, if not
impossible, to study large datasets with tens of thousands of
crates in a fully automatic manner; human analysis is only
required to complement the analysis through manual code
inspection.

Second, the study can be applied to any Rust projects with
different structures, rather than being limited to specific ones.
RUSDOC is designed with the principles of modularity and
extensibility, making it straightforward to make modifications
suitable for different needs, such as adding new datasets,
experimenting with new research questions, or studying new
evaluation metrics.

B. The Architecture

Based on the above design goals, in Fig. 2, we present the
architecture of RUSDOC, which consists of six key modules.
First, the crawler module (❶) crawls all crates in the crate
repository to obtain the source code and meta information of
the crates, such as downloads and version numbers.

Second, the front-end module (❷) takes the Rust source
code as input and extracts three parts: the source code, the
explanation, and the document testing code. Then, the front-
end module parses the code into the abstract syntax tree (AST)
for the next step.

Finally, the presence (❸), completeness (❹), size (❺), and
inconsistency (❻) measurement modules take the result of the
front-end module as input and answer RQ1, RQ2, RQ3, and
RQ4 respectively.

In the following sections, we discuss the design and imple-
mentation of each module, respectively.

C. The Crawler

We designed a crawler to collect the source code of crates
from the crate repository. For each crate, in addition to the
source code, we also collect corresponding metadata, such as
the crate name, version number, downloads, and release/update
time. To crawl the crates.io more effectively, we utilize a
method that involves downloading the database dump index
provided by the crate repository. This index provides us with
the crate name and version number. We then proceed to
download the data from the crate repository, following the
crawler policy provided by it. After fetching the data, we
set up a database of Rust crates that stores comprehensive
metadata, including the crate’s source code and version details.
This database will be utilized in the next step.

D. Front-end

The front-end module processes Rust source files in the
following three steps: 1) Code filtering: removing the binary
crates and leaving only the library crates, filtering source
Rust code by removing components that are not relevant to
document testing, such as tests and scripts. 2) Document split:
separating the code, explanations, and document testings in the
source code for the next step of parsing. 3) AST generation:
the document testing code parser and the code parser take
the Rust code as input, and build the Rust abstract syntax



trees (AST). The AST is a tree representation of the source
programs, particularly containing necessary documentation
information for subsequent analysis.

Although it is possible to combine the front-end with other
phases, the current design of RUSDOC, from a software
engineering perspective, has two key advantages: 1) it makes
RUSDOC feasible to process different Rust crates with dif-
ferent structures; and 2) it makes RUSDOC more efficient in
detecting defects by removing irrelevant files at an early stage.

E. Presence Measurement

All of the RustDoc hypotheses are intended to illustrate the
importance of documentation, but it is unknown whether doc-
umentation actually exists. To this end, RUSDOC incorporates
a presence measurement module to provide a comprehensive
assessment of the documentation in the Rust ecosystem, in-
cluding whether a crate’s homepage has documents and the
proportion of public items of each crate. The assessment is
further used to answer RQ1.

To analyze the presence, we took a two-pronged approach.
First, to validate the veracity of H1, we examine the inclusion
of corresponding documents on each crate’s homepage. The
presence of documentation on a crate’s homepage is crucial as
it offers a concise overview of the crate and showcases usage
examples. These statistics enable us to visually assess the
adherence of Rust library developers to community guidelines.

Second, we computed the documentation ratio for each crate
by counting the number of public projects (#pub) and the
number of public projects with accompanying documentation
(#doc), subsequently calculating #doc

#pub
. We believe that the

documentation ratio reflects how well a crate is documented,
and that crates with high documentation ratios are better
maintained in comparison.

F. Completeness Measurement

The second and third hypotheses of RustDoc require com-
prehensive documentation to include explanations and doc-
ument testings. To this end, RUSDOC incorporates a com-
pleteness measurement module to calculate the completeness
ratio. This ratio measures the completeness of explanations
and document testings by taking as input the AST generated
by the front-end module and the corresponding source code.
The completeness ratio is further used to answer RQ2 and
RQ3.

First, to verify H2, we calculate the documentation ratio
on each public feature (module, trait, struct, enum, function,
method, macro, and type definition) in the dataset. Note
that this indicator counts all public items in the dataset,
grouped by features. Specifically, we count the number of
documented features #featuredoc, the number of public
features #featurepub, then we calculate #featuredoc

#featurepub
.

Second, to verify H3, we separately count whether there is
an explanation and a document testing on each documented
item. We count the items with explanations #explanation,
the items with document testings #testing, and the items
with either or both of them #item doc. Then we calculate

#explanation
#item doc

and #testing
#item doc

to obtain the completeness ratio of
each item.

G. Size Measurement

To answer RQ3, we introduce a size measurement module
that measures the size of a document by taking as input the
results output by the explanation parser.

To measure the size of a document, an appropriate method
must be employed. Counting the number of lines per document
is a viable option. Although the subjective nature of this metric
has been acknowledged in previous research [44], we contend
that it does, to some extent, reflect the human effort invested
in the document.

Since some documents may contain meaningless characters
and incomprehensible words, moreover, different blank line
and newline schemes can inadvertently bias such measure-
ments. To complement this study, we count the number of
words in a document to obtain a more precise documentation
size.

H. Inconsistency Measurement

Document testings should be consistent with the corre-
sponding code, otherwise code comprehension will be hin-
dered. To this end, RUSDOC incorporates an inconsistency
measurement module to calculate the inconsistency ratio. This
ratio measures the inconsistency by taking as input the AST
generated by the front-end module. The inconsistency ratio is
further used to answer RQ4.

Detecting inconsistencies between documentation and code
poses a significant challenge. Prior work [15] [45] [14] has
proposed rule-based approaches to identify pre-existing in-
consistencies within specific domains. However, this does not
apply to the detection of document testing. As a first step,
we performed a detection of document-code inconsistencies
for functions and methods. More specifically, if a function or
method is not referenced in its respective document testing,
it is considered an inconsistency. Since this does not meet
user expectations, as mentioned in previous work [4], most
developers pointed out that incorrect code examples are an
important issue affecting the correctness of the documentation.
For example, we can detect the inconsistency in Fig. 1 even
though it uses the ‘ignore’ attribute.

To calculate the inconsistency ratio, we start by tallying the
total number of all document testings #total, then we count
the number of inconsistencies #mismatch, then calculate
#mismatch
#total

.
To further delve into the underlying reasons behind

document-code inconsistencies, we conduct a manual review
of select cases. The manual review consists of two steps. First,
we investigate the commit history of the code repository to
ascertain whether errors arise due to the documentation not
being updated in sync with the code. Second, we consult
developers regarding the potential causes of specific examples.

V. EMPIRICAL RESULTS

In this section, we present the empirical results by answer-
ing the research questions. We first illustrate the experimental



TABLE I: Dataset used in this study.

Name Source Size

DS1 crates.io [7] 101,868 crates

DS2 crates.io 500 crates

DS3 Rust standard library [46] 404 files

setup (§ V-A), then present the datasets (§ V-B), and then
answer the previously mentioned research questions (§ V-C to
§ V-H).

A. Experimental Setup

All the experiments and measurements were conducted on a
server with one 4 physical Intel i7 core CPU (8 hyperthreads)
and 12 GB of RAM, running on Ubuntu 21.04.

B. Datasets

We created three datasets, as shown in Table I. Our data
selection criteria are presented in Section III-B. We hereby
present the actual crates incorporated in our study and eluci-
date the reasons for not including all Rust crates in our dataset.

First, we selected the latest versions of 101,868 crates on
the Rust community’s crate registry (crates.io). Out of the total
127,232 crates on crates.io, we excluded 4,711 crates whose
latest versions were not downloaded successfully. As the aim
was to analyze the quality and inconsistency of the crate
documentation, we excluded crates that were compiled into
binary (20,653 in total). Afterwards, our dataset DS1 contains
101,868 crates, which represents 80% of the total registered
crates.

Second, we analyzed the popular and actively-maintained
crates in our dataset. Considering the criterion utilized in prior
work [47], we opted to employ the download count as an
indicator of popularity. This choice is justified by the fact
that the download count accurately reflects both the extent of
user engagement and the attention directed towards the crate.
For this analysis, we selected 500 crates whose downloads
accounted for 74% of the total downloads. We call this dataset
DS2.

Third, we selected version 1.68.0 of the Rust standard
library for our study because it was the most latest version
at the time of our research. We call this dataset DS3.

C. RQ1: Presence

To answer RQ1 by investigating the presence of the doc-
umentation, we applied RUSDOC to the dataset DS1. Our
findings revealed that out of all the library crates, 45,136
crates (44.31%) have documents on their crate homepage. This
suggests that a significant proportion of crate maintainers in
the Rust ecosystem prioritize documentation and are dedicated
to enhancing the user experience.

Subsequently, we computed the distribution of documen-
tation ratios for DS1 and DS2. Fig. 3 displays the his-
togram and kernel density estimation curve for both datasets.
Upon examining the figure, it became evident that in DS1,
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Fig. 3: Document ratio distribution and kernel density estima-
tion of DS1 and DS2, respectively.

TABLE II: Rust crates with and without any documentation,
grouped by feature. A crate may contain multiple documented
features.

Document #Crates Ratio

None 37,932 37.24%
Some 63,936 62.76%
All 16,650 16.34%

most crates either have zero or all documents, while the
documentation ratios of other crates are evenly distributed.
Conversely, DS2 has a higher concentration of crates with
a 100% documentation ratio. We further listed the number
and proportion of crates in DS1 with no documents, some
documents, and all documents in TABLE II. Overall, 62.76%
of crates contained at least one document, while 37.24% of
crates had no documentation at all.

Summary: The proportion of crate homepages in the Rust
ecosystem that include documentation is 44.31%, partially
supporting RustDoc hypothesis H1. Additionally, it is ob-
served that 37.24% of crates have no documentation.

Suggestion: We recommend that developers of Rust li-
braries place a priority on creating comprehensive homepage
documentation for their crates, to assist users in understanding
and effectively utilizing them. These results further emphasize
the potential and necessity of automated documentation gen-
eration techniques.

D. RQ2: Completeness

To answer RQ2 by investigating the completeness of the
Rust documentation, we first applied RUSDOC to the dataset
DS1, DS2, and DS3, to obtain the documentation ratio of
each feature. TABLE III shows the documentation ratio of
different features, in different datasets. The first column lists
each feature that should have documentation. Note that this
item must be public since only public items will be exposed
externally. The second, third, and fourth columns list the
percentage of items that have documentation in DS1, DS2,
and DS3, respectively.

We then investigated the ratio of explanation and document
testing in DS1. The empirical results are presented in TABLE
IV. The first column lists public features. The second column



TABLE III: Documentation ratio for each public feature.

Feature DS1 DS2 DS3

Module 16.34% 57.31% 78.16%
Function 36.13% 50.85% 25.49%
Struct 15.50% 21.22% 34.51%
Enum 20.15% 26.60% 67.74%
Trait 51.73% 78.82% 92.55%
Method 13.82% 69.86% 36.31%
Macro 51.48% 62.75% 80.00%
Typedef 2.90% 2.12% 5.30%

Average 13.23% 34.20% 34.00%

indicates the ratio of explanation in all documented items,
respectively. The third column indicates the ratio of document
testing.

The empirical results provide four interesting findings and
insights: 1) the documentation ratio of all public items is
13.23% in all datasets, which means that more than half of
the items do not have documents. However, the documentation
ratio of DS2 (34.2%) and DS3 (34.00%) is significantly higher
than that of DS1 (13.23%); 2) traits have the highest ratio
(51.73% in DS1), while type definitions have the lowest ratio
(2.90% in DS1); 3) the explanation ratio of all items is higher
than 99%, meaning that most documents contain a description
in natural language. This partially supports Rustdoc’s second
hypothesis (H2); and 4) except for functions (13.24%) and
macros (41.12%), the document testing ratio of all items is less
than 10%, indicating that most items do not contain document
testings. This violates the third Rustdoc hypothesis (H3).

We then speculate on three possible reasons for these
results. First, trait is a Rust feature that specifically outlines
how different types should behave and interact. Trait users
are more likely to consult the documentation, while type
definitions directly and clearly explain the specific functions
and behavior of each type, which eliminates the need for
further documentation. For example, the type alias for Result
in serde_json is as follows:

1 pub type Result<T> = Result<T, Error>;

which means Result<T>is a type alias of Result<T, Error>.

Secondly, users often require sample code for functions and
macros as they may be unclear on how to use them. On the
other hand, information related to structs and enums is self-
explanatory, and users can directly access details from their
fields without the need for document testing.

Finally, we hypothesized that the lack of documentation may
be due to subjective reasons on the part of the developers. To
confirm this hypothesis, we conducted a questionnaire survey
in RQ6 and obtained answers to this question.

TABLE IV: Explanation and document testing ratio for docu-
mented public features, in DS1.

Feature Explanation Document Testing

Module 99.99% 7.10%
Function 99.92% 13.24%
Struct 99.99% 5.28%
Enum 99.99% 0.93%
Trait 99.99% 5.70%
Method 99.98% 6.07%
Macro 99.76% 41.12%
Typedef 99.99% 0.58%

Average 99.98% 5.54%
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Fig. 4: The boxplot of the distribution of the document lines
and document words for dataset DS1.

Summary: The documentation in the Rust crate repository
is inadequate (13.23%), Among them, traits have the highest
documentation ratio (51.73% in DS1), and type definitions
have the lowest ratio (2.90% in DS1). The Rust ecosystem
has the explanation ratio of 99.98% for documented items,
which partly supports the second Rustdoc hypothesis (H2).
However, the repository has a low ratio of document testings
(5.54%), which violates the third Rustdoc hypothesis (H3).

Suggestion: We recommend that maintainers of libraries
increase the document testing efforts, as this practice can
significantly enhance the readability and usability of the docu-
mentation. This challenge can be addressed by developing au-
tomatic generation techniques specifically for Rust document
testings.

We also recommend that Rust’s documentation guidelines
more clearly define when documentation is required and when
it can be omitted. For example, according to the empirical
findings of DS3 (which represents the best practice for doc-
umenting Rust), traits necessitate the most documentation,
whereas type definitions require the least to some extent.

E. RQ3: Size

To answer RQ3 by investigating the size of the document,
we apply RUSDOC to the dataset DS1. The boxplots in Fig.
4 show the distribution of document lines and word counts.

The empirical results give two interesting findings and
insights. First, a majority of lines in the documents have fewer
than 10 lines and have fewer than 50 words. This suggests
that Rust crate documentation, on average, tends to be concise



and straightforward. Through further automated inspection, we
found that a large proportion (i.e. 66.22%) of small documents
only occupy 1 line and have a simple one-sentence description
of the corresponding code.

Second, macros have the largest documentation size, which
may indicate that macros generally require more detailed and
extensive explanations to clarify their functionality and usage.
The definition type has the smallest documentation size, which
means that the type definition may be more self-explanatory
or require less documentation due to its inherent clarity.

Summary: The size of documents is typically small as the
number of lines is less than 10 and the number of words is
less than 50.

F. RQ4: Inconsistency and Root Cause Analysis

To answer RQ4 by investigating the inconsistencies of the
source code documentation and analyzing root causes, we
apply RUSDOC to the datasets DS1, DS2, and DS3.

The empirical results provide two interesting findings and
insights. First, among all crates with document testing on
dataset DS1, the overall inconsistency ratio is 3.51%, while
the inconsistency ratio for dataset DS2 is 1.81%. Second, we
found that over 700 functions and methods in the Rust standard
library with testings were examined, and the documentation
for only one method did not match its source code.

To further explore the root causes leading to inconsistency
factors, we performed a manual inspection of the source code
and identified three key reasons. First, documentation and code
may be written out of sync, leading to potential mismatches
between them. This could occur when documentation is added
after the code has been implemented and not thoroughly tested.
For example, a document-code inconsistency occurred in crate
config_struct [48] in the following code:

1 /// config_struct::create_struct_from_source
2 pub fn create_enum_from_source<S: AsRef<str>, P:

AsRef<Path>>

As can be seen from the repository’s commit history, all
documentation was added in one commit at one time, and
the author may not have noticed the mismatch.

Second, document testing is underappreciated and under-
utilized. Since multiple functions may have similar func-
tionality, it is possible for a developer to copy and paste
the documentation for one function into another without any
modification. For instance, our tool detected a document-code
inconsistency in the Rust standard library, and the code is as
follows:

1 // The function is not called in the associated
document testing.

2 // std/sync/condvar.rs: line 66
3 pub fn timed_out(&self) -> bool {

The document testing for this function does not mention
the timed_out method, resulting in a mismatch between

TABLE V: documentation presence ratio, completeness ratio,
and inconsistency ratio by year.

Ratio 2018 2019 2020 2021 2022 2023

P1 6.48% 7.09% 7.79% 7.79% 12.77% 13.23%

C2 10.29% 10.12% 10.10% 10.08% 5.94% 5.54%

I3 2.01% 2.57% 2.78% 2.53% 2.70% 3.51%
1, 2, and 3 are abbreviations of Presence, Completeness and Inconsistency,
respectively.

the documentation and code. Since the Rust standard library
provides many basic functions and common data structures, it
is widely used in the Rust ecosystem. Such an inconsistency
may lead to a misunderstanding of the code, which may further
lead to bugs or vulnerabilities. We have reported this issue [49]
to the developers. A developer has fixed the bug, and the fix
has now been merged into the Rust master branch [50].

Third, the abuse of Rust’s re-export mechanism can result
in inconsistencies between the documentation and code. For
example, a document-code inconsistency occurred in crate
primal_check in the following code:

1 /// ‘‘‘rust
2 /// assert_eq!(primal::is_prime(1), false);
3 /// assert_eq!(primal::is_prime(2), true);
4 /// ‘‘‘
5 pub fn miller_rabin(n: u64) -> bool {

The developer acknowledged that this is a “weird situation”,
given that is_prime is a re-export of miller_rabin [51].

Summary: The inconsistency ratio between documentation
and code is 3.51%. Two primary underlying causes con-
tribute to inconsistencies: document-code desynchronization
and errors arising from copy/paste actions.

Suggestion: We recommend that the maintainers of the
library publish the source code on code-sharing platforms
(e.g., GitHub), thereby encouraging and enabling external
contributors to add new content or propose fixes for the
documentation. We also recommend the development of a just-
in-time inconsistency detection tool for document testing.

G. RQ5: Evolution

To answer RQ5 by investigating documentation evolu-
tion, we obtained data by retrieving all available crates on
crates.io from 2018 to 2023, since 2018 is the earliest
recorded year. We then analyzed the presence, completeness,
and inconsistency. The empirical results are presented in
TABLE V. The table comprises several terms, among which is
presence, indicating the ratio of documentation for all public
items in the dataset. The completeness ratio represents the
complete ratio of document testing of these public items.
The inconsistency ratio represents the number of document
testing mismatches #mismatch divided by the number of all
document testings #total, i.e. #mismatch

#total
.



TABLE VI: Challenges faced by developers when consulting
documentation.

Problem Description Ratio

Nonexistence No documents on this item. 78.57%
Unexplained The example was insufficiently explained. 53.57%
Incompleteness No runnable example. 35.71%
Ambiguity The description was very unclear. 32.14%
Redundancy API description was too extensive. 21.43%
Obsolescence The documentation is outdated. 7.14%
Incorrectness Some information was incorrect. 7.14%

The empirical results give three interesting findings and
insights. First, the presence of documentation increased from
6.48% in 2018 to 13.23% in 2023, and we speculate that
this increase is due to developers paying more attention
to documentation, and acknowledging software engineering
advantages.

Second, the completeness ratio of the documentation de-
creased significantly in 2022 from 10.08% to 5.94%, due to
the lack of document testing. To investigate the root cause, we
conducted experiments on the 17,685 new crates released in
2022. The results revealed that the presence ratio among the
new crates was 34.27%, while the completeness ratio of the
document testing was merely 1.99%.

Third, the document-code inconsistency ratio increased
from 2.01% in 2018 to 3.51% in 2023.

Summary: We concluded that there was no significant trend
in documentation use over the past six-year period. The
presence ratio (from 6.48% to 13.23%) and inconsistency
ratio (from 2.01% to 3.51%) of documents have increased,
and the complete ratio has decreased from 10.29% to 5.54%.
Overall, developers tend to pay increasing attention to adding
documentation; however, they often neglect to supplement it
with adequate testing.

H. RQ6: Rust Developer Perception

To answer RQ6, we designed a survey and posted it on the
Rust Subreddit [52] and Rust user forum [53], a selection used
in prior work [47], collecting data from 30 respondents (as of
this study). The participants were asked about the issues they
encountered while writing and consulting documentation.

The first question (SQ1) asked whether or not Rust develop-
ers add document testings to their crates. The majority (72%)
responded that they added a few, while a minority (28%) stated
that they added none or all, aligning with the findings for RQ1
and RQ2.

The second question (SQ2) asked Rust developers to indi-
cate the reasons for not including testing in the documentation.
More than half of the respondents (63%) reported insufficient
time as the main factor, while some of them (53%) mentioned
either adding it or planning to do so in the future. Concerns
about slow execution time or ineffective testings of certain
aspects through examples were expressed by 8% of the re-
spondents. They also considered utilizing untested examples

to be poor practice. Other reasons selected include the belief
that the API’s clarity was satisfactory without the need for
an example (38%) and a lack of knowledge on how to add it
(8%).

The third question (SQ3) focused on the difficulties encoun-
tered when writing the testing. The majority of respondents
(63%) reported a lack of understanding of how to write and
test effective examples in Rust. Other challenges mentioned
were the potential deceleration of testing processes and the
absence of support or feedback from official tools (such as
clippy [54], rustfmt, and rust-analyzer) as well as third-party
tools. The responses to SQ2 and SQ3 provide further insights
into the underlying causes investigated in RQ2.

The fourth question (SQ4) inquired about the challenges
faced when consulting other crate documentation. TABLE VI
shows the typical responses to this question, including the
encountered problem, a short description of the problem, and
the percentage of respondents experiencing it. As this question
allowed for multiple responses, participants could select more
than one option.

Finally, SQ5 solicited suggestions for improving Rust doc-
umentation. It is worth noting that this question was optional,
and not all participants answered it. Here are a few some
representative answers for this question, which may not en-
compass everyone’s views or experiences: 1) “I prefer many
small examples than some large ones. small examples might
not highlight all features, but it’s better to have examples
for each item than only large ones for some. Quantity over
quality.” 2) “A little effort goes a long way. Often a single-
line description is enough to let your users know how the
item is meant to interact with the rest of the crate.” 3) “Do
not repeat words from the function name. Explain technical
terms.”

Summary: Most Rust developers (63%) state that they do
not have sufficient time to provide examples. The most (63%)
challenging aspect that they encounter is not knowing how to
get started. The notable challenges arising from consulting
documentation are the lack of documentation (78.57%) and
unclear explanations (53.57%).

Suggestion: We recommend starting documentation in the
early stages of the software lifecycle and designating ade-
quate time, effort, and resources for documentation within the
project. For developers who don’t know how to get started, we
recommend consulting the official Rustdoc book [23], which
offers valuable guidance and examples.

VI. IMPLICATIONS

This paper presents the first and most comprehensive em-
pirical study of Rust documentation at an ecosystem scale. In
this section, we discuss some implications of this work, along
with some important directions for future research.

For Rust language designers. The findings from this
study offer insights for Rust language designers to enhance
Rust documentation: 1) the documentation guidelines should
provide clearer guidance on when documentation is required



and when it can be omitted; and 2) the tool can be utilized
to conduct completeness and inconsistency documentation
checks before they are published to crates.io.

For tool builders. We recommend that tool builders develop
corresponding tools to detect real-world document-code in-
consistencies, especially for documentation testing. Since our
prototyping system took the first step toward it, it was feasible
to develop such a tool. We advocate for the advancement of
automatic documentation (e.g., [55] [56] [57]) and sample
code generation technology as solutions for addressing the
issue of inadequate documentation.

For Rust developers. Although the Rustdoc guidelines have
been proposed for a long time, our findings support them only
partially, and it is important to note that we found that the lack
of testing in the documentation became more common. Based
on the observation, we suggest that Rust developers should:
1) start documentation in the early stages of the software
lifecycle and clearly allocate time, effort, and resources to
documentation within the project; 2) create crate homepage
document and more document testings to improve document
usability, refer to the rustdoc book if necessary; and 3) put
the code repository on code-sharing platforms for feedback
and external contributions.

VII. THREATS TO VALIDITY

As in any empirical study, there are threats to the validity of
our work. We attempt to remove these threats where possible
and mitigate the effects when removal is not possible.

Dataset. The main threat to validity is related to the
representativeness of our dataset. For all currently compiled
library crates from crates.io, we believe our analysis is
representative of the Rust ecosystem [44] [47]. However, in our
study, our dataset only includes all currently compilable crates
in crates.io, excluding other code sources such as GitHub.
Fortunately, the architecture of RUSDOC (Fig. 2) is neutral to
any specific dataset used, so a new dataset can always be added
without difficulties.

Dynamic inconsistency detection. Our results mainly fo-
cused on the static detection of inconsistencies, while ignoring
dynamic detections. For example, there might be functionality
inconsistencies between the documentation and the code. To
mitigate this risk, we supplement our automated measurements
with manual code inspections.

Natural language inconsistency detection. In our study,
we only analyzed inconsistencies in the document testing,
excluding the natural language part of the document (i.e., the
explanation), which may potentially lead to an underestimation
of the overall ratio of inconsistencies. As the Rust ecosystem is
relatively new, with over 80,000 crates developed in less than
four years, outdated documentation might not be prevalent. We
leave it to future work to study document-code inconsistency,
by leveraging prior work in this direction [21] [22].

Sample bias in questionnaires. Our questionnaire survey
may have sample bias. For instance, the respondent pool in
the sample may not be representative of the Rust developer
population. Additionally, the sample size may be too small,

which could potentially affect the survey’s accuracy. Answer
bias and questionnaire design bias are also possible sources
of error. To improve the survey’s representativeness, we will
continue to conduct surveys in the future.

VIII. RELATED WORK

In recent years, there have been a significant number of
studies on language documentation. However, the work in this
study represents a novel contribution to this field.

Documentation studies. Numerous research efforts focused
on analyzing documentation. Steidel et al. [58] adopted ma-
chine learning methods to classify comments into seven cate-
gories, and further analyzed and evaluated the quality of code
comments. Geng et al. [59] proposed Fosterer as an automated
solution to analyze the semantic relationship between code and
specific tokens in comments. Vidoni [60] mined and analyzed
379 systematically selected open-source R packages for their
quality in terms of documentation existence, distribution, and
completeness. However, none of these studies conducted a
large-scale empirical analysis of the Rust ecosystem.

Document-code inconsistency studies. Document-code in-
consistency has been studied extensively. Tan et al. [15]
proposed iComment, a technique using NLP, machine learning,
and program analysis to detect code-comment inconsistencies
in locking mechanisms. Then they [45] further proposed
@TCOMMENT, an approach for testing Javadoc comments,
specifically focusing on method properties related to null
values and exceptions. JavadocMiner [16] was designed to
evaluate the quality of Java comments and code-comment
consistency through a set of heuristics. Ratol et al. [61]
proposed Fraco, to detect inconsistencies in code comments
due to renamed refactoring operations performed on identi-
fiers. TDCleaner [62] was designed to automatically identify
and remove obsolete TODO comments in software projects.
However, none of these studies can be directly applied to
investigate Rust document testing, due to the feature discrep-
ancies between Rust and these programming languages.

IX. CONCLUSION

This paper presents the first and most comprehensive em-
pirical study of Rust documentation at an ecosystem scale.
By designing and implementing a software prototype called
RUSDOC, we conducted a quantitative study to investigate the
presence, completeness, and inconsistency of documentation in
the Rust ecosystem, which is complemented by a qualitative
study to investigate the root causes leading to document-
code inconsistencies. We identified root causes leading to the
low ratio of documentation, insufficient document testing, and
document-code inconsistency. Additionally, we also surveyed
Rust developers to understand their perceptions of document
testing and the challenges they face. This work represents a
first step towards understanding Rust documentation culture
among the Rust community, emphasizing the need to further
strengthen the Rust ecosystem and establish better documen-
tation guidelines.
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