
RUSTCHECK: Safety Enhancement of Unsafe Rust via Dynamic Program Analysis

Lei Xia, Yufei Wu, and Baojian Hua*
School of Software Engineering, University of Science and Technology of China, Hefei 230026, China

Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
xialeics@mail.ustc.edu.cn, wuyf21@mail.ustc.edu.cn, bjhua@ustc.edu.cn*

* Corresponding author.

Abstract—Rust is a modern system-level programming lan-
guage providing strong security guarantees, which has been
widely applied in building software infrastructures. However,
unsafe Rust, a language feature introduced for program-
ming flexibility and efficiency, can be prone to memory
vulnerabilities due to the lack of compile-time and run-time
checks. Worse yet, it is challenging to diagnose such memory
vulnerabilities in Rust programs, due to the subtle interac-
tions between the safe and unsafe code. This paper presents
RUSTCHECK, the first memory safety enhancement framework
for dynamic program analysis of Rust programs. The key idea
of RUSTCHECK is to dynamically detect memory safety issues
caused by the improper use of unsafe Rust through static
instrumentations. We have implemented a software prototype
for RUSTCHECK and conducted experiments to evaluate the
effectiveness and performance of it by applying RUSTCHECK
to 56 CVES from real-world Rust projects. And experimental
results showed that RUSTCHECK can successfully detect all
of 65 memory vulnerabilities in CVEs, with low runtime
overhead (3.30% on average) to the Rust projects being
checked.

Keywords–Unsafe Rust, Security, Dynamic analysis

1. INTRODUCTION

Rust [1] is an emerging system-level programming designed
to address the memory safety issues of traditional languages,
such as C/C++. It provides strong security guarantee via its
novel language features and strict safety checks. In view of its
technical advantages, Rust is gaining widespread adoptions in
building software infrastructures.
However, certain scenarios arise in which low-level operations
or interactions with external code demand greater flexibility
than the safe Rust programming model can offer. Conse-
quently, unsafe feature [2] is introduced as a deliberate part
of Rust for programming flexibility and efficiency, while it
comes with the potential drawback of increased susceptibility
to memory vulnerabilities due to the absence of compile-time
and run-time checks. Furthermore, diagnosing these memory
vulnerabilities in Rust programs can be especially difficult,
owing to the intricate interplay between safe and unsafe code
segments. The pervasive use of unsafe feature in Rust has
posed severe threats to Rust safety [3] [4] [5].
Recognizing this problem, a considerable amount of security
studies has been conducted on Rust (e.g., vulnerability detec-
tion [6] [7] [8] [9]). Unfortunately, while prior studies have

made considerable progress on the safety enhancement of the
unsafe Rust, they still have two limitations. On one hand, the
utilization of static program analysis by these established tools
can result in false positives and false negatives, potentially
causing confusion to developers. On the other hand, the error
messages provided by these tools lack the necessary depth to
assist developers in accurately diagnosing the root causes of
potential vulnerabilities.
To address these limitations, this paper presents RUSTCHECK,
the first fully automatic memory safety enhancement frame-
work for dynamic program analysis of Rust programs through
static instrumentations. This framework possesses the capabil-
ity to identify and report intricate causes of bugs, utilizing
runtime information that is challenging to acquire through
static analysis. RUSTCHECK takes the following three key
steps to detect and diagnose bugs in Rust programs: 1) per-
forming static program analysis to annotate all memory-related
operations and identity proper positions for the following
instrumentation; 2) inserting necessary runtime checks against
the potential memory vulnerabilities; and 3) re-executing the
instrumented Rust programs to identify the vulnerabilities and
analysis root causes of the bugs or crashes.
We have built a software prototype of RUSTCHECK and con-
ducted initial experiments with it on 56 memory-related CVEs
to evaluate the validity of it. Experimental results showed that
RUSTCHECK successfully detected all of 65 memory vulner-
abilities in the 56 known CVEs, and offered comprehensive
analysis of the root causes for each test case, which is valuable
to help Rust developers to fix the problems. Besides that, we
measured the execution time of the instrumented programs,
and the experimental results showed that RUSTCHECK incurs
low runtime overhead, with 3.30% on an average.

2. APPROACH

In this section, we elucidate our approach by expounding on
the design and implementation of RUSTCHECK.

2.1. Design

As presented by Figure 1, the architecture of RUSTCHECK
consists of five key modules, which will be discussed next in
detail, respectively.
Front-end. The frontend module takes as input the target Rust
source files being detected and diagnosed, and generates the
MIR (Middle-level Intermediate Representation) representa-
tions for the programs.



Instrumentation
3

Front-end
1

Diagnostic 
5

Code Generator
4

Analysis 
2Rust Source

Files
MIR

Annotated
MIR

Instrumented
MIR

Instrumented
Binary Report

Figure 1: RUSTCHECK Architecture

Analysis. This module takes as input the generated MIR from
the frontend module, and builds a control-flow graph for each
function in the program. Then, it will identify all memory-
related operations, such as allocation, read, write, or reclaim,
and identify the sites that require security instrumentations.
Instrumentation. This module generates instrumented MIR
from annotated MIR, by inserting necessary safety checks,
according to the corresponding type of potential memory bugs.
Code generator. The code generator generates instrumented
binaries from the instrumented MIR. In this pass, the instru-
mented binaries are also linked against a customized secu-
rity library RUSTCHECK provides, which designed to collect
runtime informations and help RUSTCHECK to perform root
causes analysis.
Diagnostic The diagnostic module takes as input the annotated
binaries and re-executes it, to confirm the vulnerabilities and
generate detailed reports recording program outputs, logs,
running time, etc, for subsequent manual analysis.

2.2. Implementation

We have implemented a software prototype which works as a
customized Rust compiler driver, following the architecture of
RUSTCHECK. This prototype utilizes the official rustc com-
piler for parsing Rust source code and producing instrumented
binaries. Additionally, it employs specific passes that operate
on MIR supplied by the Rust compiler to enact the analysis
algorithm and implement instrumentation. To complement
this, we offer a customized security library, intended to be
linked with the instrumented binaries for conducting root cause
analysis.

3. EVALUATION

RUSTCHECK is undergoing significant developmental ad-
vancements, and we have undertaken preliminary experiments
utilizing the current implementation. First, we created a dataset
consisting of 56 memory-related CVEs collected from the
official CVE database and curating ground truth for it. Then,
to evaluate the effectiveness and performance of RUSTCHECK,
we applied RUSTCHECK to this dataset. The experimental
results demonstrated that RUSTCHECK effectively detected all
65 memory vulnerabilities in all 56 known CVEs and provided
comprehensive root cause analyses for each case, with an
acceptable runtime overhead of 3.37% on average.

4. RELATED WORK

A significant amount of work on Rust security has been
made in general. Qin et al. [3] conducted an empirical study
of memory and concurrency security vulnerabilities in Rust
applications. Xu et al. [4] investigated 186 Rust memory
security-related CVEs and proposed a taxonomy. Astrauskas
et al. [5] studied the use of unsafe in 31867 Rust crates
and summarized the usage scenarios of unsafe. SafeDrop [6],
Rudra [7], Mirchecker [8], and Rupair [9] all perform vulnera-
bility detection based on static program analysis. However, our
work first employs dynamic program analysis for vulnerability
detection and root cause diagnosis in Rust programs.

5. SUMMARY

In this work, we present the first software prototype
RUSTCHECK, to enhance the safety of unsafe Rust, by per-
forming static program instrumentation on MIR. We per-
formed priliminary experiments with RUSTCHECK, demon-
strating its effectiveness in diagnosing all existing memory-
related Rust CVEs, with low runtime cost.

REFERENCES

[1] “Rust programming language,” https://www.rust-lang.org/.
[2] “Unsafe,” https://doc.rust-

lang.org/std/keyword.unsafe.html.
[3] H. Xu, Z. Chen, M. Sun, Y. Zhou, and M. R. Lyu,

“Memory-safety challenge considered solved? an in-depth
study with all rust cves,” ACM Transactions on Software
Engineering and Methodology, vol. 31, no. 1, pp. 3:1–
3:25, Sep. 2021.

[4] B. Qin, Y. Chen, Z. Yu, L. Song, and Y. Zhang, “Under-
standing memory and thread safety practices and issues in
real-world rust programs,” in Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Jun. 2020, pp. 763–779.

[5] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers,
“Leveraging rust types for modular specification and
verification,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, Oct. 2019.

[6] M. Cui, C. Chen, H. Xu, and Y. Zhou, “Safedrop: Detect-
ing memory deallocation bugs of rust programs via static
data-flow analysis,” Apr. 2021.

[7] Y. Bae, Y. Kim, A. Askar, J. Lim, and T. Kim, “Rudra:
Finding memory safety bugs in rust at the ecosystem
scale,” in Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, Oct. 2021, pp.
84–99.

[8] Z. Li, J. Wang, M. Sun, and J. C. Lui, “Mirchecker:
Detecting bugs in rust programs via static analysis,” in
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, Nov. 2021, pp.
2183–2196.

[9] B. Hua, W. Ouyang, C. Jiang, Q. Fan, and Z. Pan, “Rupair:
Towards automatic buffer overflow detection and rectifica-
tion for rust,” in Annual Computer Security Applications
Conference, Dec. 2021, pp. 812–823.


	Introduction
	Approach
	Design
	Implementation

	Evaluation
	Related Work
	Summary
	References

